Experiencing the World

Kevin Rooney

Dimensional Innovations

Follow this and additional works at: http://newprairiepress.org/oz

Part of the Architecture Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation

This Article is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Oz by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
Since even the earliest paintings in the caves of Cantabria, Spain, the visual intentions of western cultures have been centrally focused activities for producing the objects of art. In the strict sense of vision, these objects provide conceptual context of intention. In other words, they transfer meaning. We can see this trend in the Renaissance period with Christian paintings depicting every detail in sharp vivid character with the intention of delivering contextual stories with every figure. During the Renaissance, architecture was no different in its fetish of details and orders, dogmatic deliverances of materiality, and expression of cultural icons imbedded in niches and friezes, all of which directed our focused attention to the particular pieces of the architecture.

However, during the Salon de Paris art show in 1874, Monet’s *Impression: Sunrise* decidedly took a different turn for the visual exploration of art, one which I argue is a peripheral experience which provides a type of ambient mood much in the same regard as its title bears. In 1910, a very similar change in visual experience occurred in architecture, summoned by Adolf Loos’s lecture on ornament and crime, where all ornament was abandoned due to its reference of meaning within a given time period. If Monet and Loos removed the ornament, and thus the focus, what then are we responding to when we experience their work? In regards to architecture, someone well versed in the training of architecture might then refer to the precise detailing of a great design or the well organized functionality of its purpose. For example, the AEG Turbine Factory by Peter Behrens contains both of these qualities. Such a statement begs the question; are Behrens’s details and functionality the experience of his architecture, or are they subservient to some other quality which is more critical to our experience of his work? I think anyone would feel uneasy about pointing to the details and function as the primary reason for experiencing architecture.

The answer may lie in the way our visual system processes the world it sees. Specifically, the breakdown of the central and peripheral visual streams and how each affect our emotional reaction to our environment. The suggestion is that objects enter our central stream and are more concerned with their meaning, while environments enter our peripheral stream and are more concerned with the emotional experience of the space. In this regard, architecture is predominantly experienced through the peripheral stream which provides an impression by way of a primary emotional reaction. Behrens was directly interested in the power of experience as the primary design principle for the AEG Turbine Factory.

Behrens and the Influence of Schmarsow

In 1893, Peter Behrens attended a lecture by August Schmarsow in Leipzig.
Germany. Schmarsow's lecture, prior to Behrens's design of the AEG Turbine Factory constructed in 1908, laid out a shift from tectonics to the experience of space.

The critical account of Schmarsow's theory is that there is no concern for the "things" or objects of architecture. He was only concerned with the exploration of space within the context of the architecture. Behrens's factory followed suit in deciding that the traditional dogmatic concerns of architecture were no longer applicable under the industrial setting. As Mies van der Rohe pointed out, Behrens was able to consider such new exploration outside of dogma because there existed no precedence for industrial factory design. In this context, Behrens was able to see the would-be factory without the constraints of predesigned methods. Behrens was only limited by the structural and programatic demands of the factory itself. In Behrens's own words, "This hall should have an enclosed, planar definition emphasizing the architectonic proportions of its space. The principal vertical members were detailed with solid walls in order to give them mass, emphasizing their dual roles as both structural supports and space-definers" (see figure 3).

Concrete, for Behrens, became removed from the notions of structure and was used as a plastic filler in order to define a particular type of space. The detailing of the concrete thus became subservient to the desired feeling it would create. Behrens had a particular agenda to convey "physical and cooperate power." He did so without bringing attention to particular details or ornament, but by creating an ambient feeling of strength and organization. The success of the Turbine Factory lies in its subservient nature of detailing which creates a feeling within the space. It is something we see in the space, not by looking directly at it, but by experiencing it visually through movement as Schmarsow suggests. If, on the other hand, one were to consider Behrens's factory as the ultimate of utilitarian design, they would have missed the point. Friedrich Krupp's factories of the same time would have fit the utilitarian constructs because they aimed only to fulfill the "conditions of the site, use, process, and construction" (see figure 4). We are left to understand Behrens's work more precisely as an experience of power supported by his details and functionality. Without the feature of power, his details and functionality would be more compared with Krupp Factories functional execution.

Schmarsow's Empathetic Experience

Mitchell Schwarzer's (1991) analysis of Schmarsow gives us a well rounded account of Schmarsow's investigation into the spatial composition of architecture as the appropriate way of understanding architecture. Schwarzer synthesizes three major works of Schmarsow into an understanding that architecture is primarily a dynamic spatial perception of experiences which are appropriated through the sense of bodily movement perceived by the visual and tactile senses, as "local signs" culminating into an empathetic experience. Bodily movement, as the dynamic aspect of spatial perception, is the axial position Schmarsow takes in distinguishing it within the other art forms. Körperempfindung. Schmarsow's word for bodily sensation, is defined by the relationship of the human in nature through movement. This begins with the primary position of a human standing with their arms at their side. In such a position, the relationship of the human, within the world, is of a vertical nature with symmetry forming the "principle dimension of length." The dimension of depth, however, is limited without motion. For Schmarsow, since spatial awareness is contingent on self-awareness, the development of architectural forms, as movement through space, are also contingent on self-awareness. This ties architecture almost completely to the relationship of the figural motion of the body. However, movement for Schmarsow is not sufficient in describing an architectural experience. He goes on to say that "architecture [is] the enlargement of bodily feelings into spatial feelings." In this way, we see that the local sensations of feelings (haptic perceptions) are then extended, through empathy, into qualities of the spatial environment as a type of spatial feeling. Architecture can then be understood as a prosthetic to the human psyche where its function is to connect our emotions to an empathetic experience of the world.
Two Visual Perceptions

Visual science provides us with a few clues as to the differences between experiencing architecture peripherally and analyzing the details which support the experience. On one hand, we can place ourselves as one of the workers on the AEG factory floor working each day under the soft glow of the articulated rhythm of the vertical members supporting the glass curtain facade. We can just as easily imagine working in a factory filled with fluorescent lighting devoid of articulation (see figure 6). In either case, we are visually focused on our task of manufacturing and are therefore not looking directly at the architecture, however, our emotional state is directly affected by our surrounding environment.

When analyzing architecture, we look directly at it in order to understand the objects which compose the environment. It is easy to see this during the traditional studio field trip to an architectural icon. Students busy themselves with the details of Carlo Scarpa’s Brion Cemetery (see figure 7), sketching intersections and laying out plans in hopes of discovering the features that make it work. How could one avoid doing so?

My goal is not to validate or invalidate either method of experiencing architecture. My goal is to communicate that each method visually understands architecture under two separate processes. The workers in the AEG factory feel their environment, while the students at the Brion Cemetery search for meaning. Such an account is supported by the way our visual system processes the environment. The workers at the factory are looking at their work while the architecture of the space falls on their peripheral stream of vision. The students, on the other hand, are visually focused on the details of the Brion Cemetery which falls on their central vision.

The connection is that central vision, roughly the size of your fist at arms length, runs through the ventral stream within the brain and is concerned with what something is, or its meaning. Our peripheral vision, everything outside central vision, runs through the dorsal stream and is concerned with how we should act or move within an environment (see figure 5). The act or action portion of the peripheral stream supports our emotional reaction to what we are seeing. For example, Behrens’s goal to design a factory that instills the feeling of “physical and cooperate power” guides the workers into a particular way of acting within the parameters of the factory. To make clear, our environment affects our emotional state, which in turn, guides the way we act within that environment.

Emotions

Cognitive scientist Alan Baddeley mentions the valenced world hypothesis which, taken from David Hume, states that the world we see is not emotionally neutral and that features in the world are toned with emotions that we perceive (2007).

This relationship suggests that emotions are only possible when these features are directly attended to centrally or peripherally. In other words, emotions do not exist in the feature or the perceiver independently, but only in relationship between the two. The critical point which has been made is that we must attend to something in order to facilitate an emotional response.

Neuroscientist Antonio Damasio describes three types of fundamental emotional reactions as primary, secondary, and background emotions (2005). Primary emotions refer to the fight or flight type in which we either have the urge to defend our territory in a fight mechanism, or we have the desire to flee our territory in order to avoid conflict in a flight mechanism. Primary emotions respond quickly to low spatial frequencies such as size, span, motion, sounds, and body configurations. Secondary emotions are more of a complex conceptual conscious type which are concerned with “systematic connections between categories of objects and situations.” Damasio’s examples of secondary emotions point to a more conceptual/semantic form which is dependent on detailed analysis of content. Such a detail analysis could only come from central vision, which suggests that in order to obtain the secondary emotional reaction, we must see it through our central stream. Again, this supports the idea

Figure 5. Dorsal versus Ventral Stream.

Figure 6. Contemporary Factory.
that when the students look at the details of the Brion Cemetery, they are accessing a conceptual/semantic analysis to determine meaning.

Given the features of Damasio’s primary emotion, it is likely that primary emotions are processed predominantly through the peripheral visual stream. This suggests that we build a primary account of our surroundings as a type of baseline mood that helps us determine how to feel within the given environment and thus promotes our action within that environment. Our experience of the world can then be seen as a confluence between the objects we analyze for meaning and the impression the environment forms in order to guide us emotionally through its spaces.

To Consider

It is interesting to see such a cultural shift in the discovery of our own vision. One from central to peripheral vision as exemplified by Monet, Loos, Schmarsow, and Behrens. But it is this understanding of peripheral vision as a pathway to an emotional reaction of mood which seems correct. One which can allow us to investigate architecture in a deeper emotional understanding of the design rather than the narrow understanding of particular rational details, function, and form. As the philosopher David Hume once said, “Reason is and ought to be the slave of the passions, and can never pretend to any other office than to serve and obey them.”

Have we placed the reason of intellectual discourse of details, function, and form over the passion of our experience of the world? My suggestion, in light of what has been mentioned, is to be as brave as Behrens: to suspend the rational to its rightful position as subservient to the emotional passion that moves us through the world; to design by first understanding the feeling of emotions which should be evoked within the context of the site and program. Only when that feeling is firmly in mind will the details, function, and form come to be as just servants to that experience.

Notes

Image Credits

Figure 1. Ramessos. http://commons.wikimedia.org/wiki/File:AltamiraBison.jpg
Figure 4. Spellcast. http://commons.wikimedia.org/wiki/File:Krupp_Factory_WWI.jpg
Figure 5. Selket (modified by author). http://commons.wikimedia.org/wiki/File:Lobes_of_the_brain_NL.svg
Figure 6. Flickr upload bot. http://commons.wikimedia.org/wiki/File:Seagate_Wuxi_China_Factory_Tour.jpg
Figure 7. Courtesy of Bob Condia.