Fungicide resistance of smco mutants of Neurospora crassa.

M Grindle

W. Temple

Follow this and additional works at: http://newprairiepress.org/fgr

Recommended Citation

This Research Note is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
Fungicide resistance of smco mutants of Neurospora crassa.

Abstract
Fungicide resistance of smco mutants of Neurospora crassa.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

This research note is available in Fungal Genetics Reports: http://newprairiepress.org/fgr/vol30/iss1/3
is much lower than that of wild type strain 74A. The other sit mutants have normal binding.

Current Work: Shortly before the demise of our group at Caltech, we had begun a biochemical search for the siderophore receptor using sit-1, sit-2 and a double mutant (sit-1, sit-2). This work was initiated by Lennart Adler who is continuing the studies at Gothenburg University, Sweden.

One of us (NPW) plans to continue the genetic analysis of the mutants to establish the location of the five sit loci in the Neurospora linkage groups.

We thank N.H. Horowitz for support, guidance and encouragement(Supported by Public Health Service Grant AI-15739.) - Division of Biology, California Institute of Technology, Pasadena, California 91125 and Department of Botany, Howard University, Washington, D.C. 20059.

*Present address: 255 S. Sierra Bonita Avenue, Pasadena, California 91106.

Grindle M. and W. Temple

Fungicide resistance of sm co mutants of Neurospora crassa.

We are using N. crassa as a model organism to investigate the mode of action of agricultural fungicides and the genetic and biochemical bases for fungicide resistance. Certain aromatic hydrocarbon and dicarboximide fungicides ("AHD" fungicides) presumably have a similar mode of action because mutants are usually cross-resistant to them. For example, Vin and os mutants of N. crassa are resistant to the aromatic hydrocarbons dichloran, chloroneb, and quinozole and the dicarboximides iprodione, procymidine and vinclozolin (Grindle and Temple, 1982 Neurospora News 29: 16-17). The fungicides are used on a wide range of crops, especially grapes, soft fruits and glasshouse plants, to combat pathogens such as species of Botrytis, Rhizoctonia and Sclerotinia. There is increasing concern that dicarboximide-resistant mutants of Botrytis cinerea might become a practical problem in agriculture and horticulture.

The sensitivity of Vin and os mutants to media of high osmolarity suggests that there are defects in the cell wall-plasma membrane complex of AHD resistant mutants. Many morphological mutants of N. crassa are believed to have abnormal cell walls or membranes, and the biochemical lesions and enzyme defects of some mutants have been determined (Scott 1976, Ann. Rev. Microbiol. 30: 85-104; Mishra 1977, Adv. Genet. 19: 341-405). Representative morphological mutants were analysed for resistance to AHD fungicides.

Each mutant was grown on dishes of Vogel's minimal medium (MM) and on MM containing 2-10 µg/ml vinclozolin to detect isolates that were more resistant than the wild type 74-OR8-1a. Colony diameters (mean of 2 measurements per colony were noted after 18 hr and 24 hr growth, and the growth rate (mm/24 hr increase in diameter) was calculated from the growth during 6 hr. Growth rates on MM and on fungicide-supplemented MM were used to determine the amounts of fungicide that reduced colony diameters by 50% (ED50) and by 95% (ED95). The ED80.

| Table II | Growth rate and fungicide resistance of sm co mutants of Neurospora crassa |

<table>
<thead>
<tr>
<th>Locus</th>
<th>Allele or isolation number</th>
<th>FGSC stock number</th>
<th>Rate of growth, mm/24 hr</th>
<th>Resistance to fungicides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MM</td>
<td>CM</td>
</tr>
<tr>
<td>smco-1</td>
<td>Y2330</td>
<td>1363</td>
<td>58</td>
<td>10</td>
</tr>
<tr>
<td>smco-2</td>
<td>R2386</td>
<td>1377</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>smco-4</td>
<td>R2435</td>
<td>1367</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>smco-5</td>
<td>R2442</td>
<td>1361</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>smco-6</td>
<td>R2477</td>
<td>1353</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>smco-8</td>
<td>R2505</td>
<td>1404</td>
<td>8</td>
<td>56</td>
</tr>
<tr>
<td>smco-9</td>
<td>R2500</td>
<td>1405</td>
<td>56</td>
<td>18</td>
</tr>
<tr>
<td>wild type</td>
<td>74-OR8-1a</td>
<td></td>
<td>98</td>
<td>112</td>
</tr>
</tbody>
</table>

*Increase in colony diameter at 26°C, mean of at least 3 replicates; diameters measured 18 hr and 24 hr after inoculation, and growth rate calculated from the growth during 6 hr. CM = MM + 0.5% casamino acids + 0.5% yeast extract.

b0 = sensitive (ED50<3µg fungicide/ml); + = low resistance (ED50>10 µg/ml); +++ = high resistance (ED95>50 µg/ml; ED95>100 µg/ml). ED values are concentrations of fungicide that reduce growth on MM by 50% or 95%.
The smco mutants were analysed for growth on MM, CM (i.e. MM + 0.5% casamino acids + 0.5% yeast extract), MM plus NaCl and MM plus 2-100 µg/ml AHD fungicides to compare them with os mutants (Note: the ED50 and ED95 values for os mutants given in Neurospora Newsl. 29 were determined from growth on sorbose medium MS, i.e. NM + (1.5% sorbose + 0.2% sucrose; ED values are lower on MS than on MM).

The following mutants were sensitive as sensitive as the wild type to dicloran and vinclozolin and were not analysed further: locus cl (isolation number CL11); col-2 (YS331); col-3 (YS296); cot-2 (R1006); cr-1 (B123); cr-2 (R2445); csp-1 (UCLA37); do (D5-51); fr (B110); a1n (637/3.4); gran (B42); le-1 (c-M8); pat (no number); rg-1 (B53, 8187 and R2357); ro-1 (B4); ro-6 (R2431); ro-10 (AR7); sh (R2371); sn (C136); spco-5 (R2450); spco-9 (R2480); sp (1405); ti (8233).

Three smco mutants resembled some os mutants in their resistance to fungicides and sensitivity to CM and MM containing NaCl (Table I). The smco-2 mutant often grew better, and its morphology became more normal, on fungicide-supplemented MM (Figure 1). Some of our Vin mutants grow better on low levels of fungicide (i.e. about 1-3 µg/ml) than on MM but they differ from smco-2 in morphology and growth rate on MM.

We showed previously (Neurospora Newsl. 29) that resistance to AHD fungicides can result from mutations in four genes: os-1, os-4, os-5 on L.G. I and os-2 on L.G. IV. This report implicates three additional genes in AHD-resistance: smco-2 on L.G. III and smco-8 and smco-9 on L.G. IV (smco-8 and smco-9 may be closely linked to os-2 see Perkins et al. 1982, Microbiol. Rev. 46: 426, 470). Resistance of some mutants to the fungicides may be related to changes in cell wall composition: os-1 mutants have abnormal amounts of hexosamines and enlarged pores in their cell walls (Trevithick and Metzenberg 1966, J. Bacteriol. 92: 1016-1020); smco-8 and smco-9 have abnormal amounts of cell wall peptides (Wathall and Tatum 1974, Biochem. Genet. 12: 59-78) and smco-9 might be defective in glucan biosynthesis (Abramsky and Tatum 1976, Biochim. Biophys. Acta 421: 106-114). However, most of the mutants with abnormal amounts of cell wall peptides (cot-2; cr-2; do; fr; gran; le-1; ro-1; spco-5; sp; ti see Wathall and Tatum 1974) and a mutant with abnormal hexosamine content (do see Edson and Brody 1976, J. Bacteriol. 126: 799-805) are not resistant to fungicides. There is no correlation between known enzyme defects in morphological mutants and fungicide resistance: cr-2 (defective adenyl cyclase), csp-1 (defective cell wall autolysing enzyme), col-2 and fr (defective glucose-6-phosphate dehydrogenase), cot-3 (defective 6-phosphogluconate dehydrogenase) and rg-1 (defective phosphoglucomutase) are not resistant to AHD fungicides. The primary biochemical lesions in AHD-resistant mutants and the mode of action of AHD fungicides have yet to be elucidated.

We wish to acknowledge the courtesy of the Fungal Genetics Stock Center in supplying the strains.
--- Department of Genetics, The University, Sheffield S10 2TN, England.