A new, highly fertile microconidiating combination, dingy, fluffy

D. D. Perkins
Stanford University

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

This New Mutants and Stocks is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
A new, highly fertile microconidiating combination, dingy, fluffy

Abstract
A new, highly fertile microconidiating combination, dingy, fluffy

This new mutants and stocks is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol26/iss1/3
A new, highly fertile microconiditating combination, dingy, fluffy.

When the linkage group IV marker dingy (38502d, Mitchell and Mitchell 1954 PNAS 40) is substituted for peach, the double mutant $dn; fl$ resembles $pe; fl$ phenotypically, producing no macroconidia and abundant grey, uninucleate microconidia. Unlike $pe; fl$, the new combination is highly fertile in homozygous crosses and as a female parent. Perithecia and ascospores are produced as quickly and abundantly as in crosses between wild types or fluffy strains. The new genotype thus appears promising as a substitute for $pe; fl$, especially where microconidiating strains are to be intercrossed.

Stocks are available from FGSC ($dn; fl$ A, No. 3517; $dn; fl$ a, No. 3518). = = = Department of Biological Sciences, Stanford University, Stanford, CA 94305.

Perkins, D.D. and M. Björkman.

Additional special purpose stocks.

Tester stocks with distal markers

$ro-7$ rip. A, α IIR, III R FGSC Nos. 3467,3468

$rip; dqw; trp-2$ A, α IIR, III R, V I R FGSC Nos. 3313,3314

The temperature-sensitive mutant rip (ribosomal protein defective; isolation No. 4M. loco, Neurospora Newsl. 22, 1975) has been mopped at the extreme right end of II, near but not allelic to un-15. It is readily scoreable on lightly inoculated slants at 34° (no growth) vs. 25° (normal growth). As a II R marker, rip seems superior to un-15, which it excels in vigor, growth rate, and fertility. It has therefore been substituted for un-15 in various tester strains.

The morphological mutant ro-7 (ropy; isolation No. R2470) mops at the left end of II very near pi, to which it may be preferred as a III R marker, since ro-7 conidiates and grows more vigorously. ro-7 is female-fertile.

cys-10 mat A, α NL, R FGSC Nos. 2615,2616

Although the morphological mutant mat is not as far right as uvs-2, it may be more convenient for scoring in some marker combinations.

chol-2 ylo-1 ws-1 A, α VII, L, R FGSC Nos. 3519,3520

Because ws-1 is the most distal gene marker in VIR, well right of trp-2, this combination may be preferable to chol-2 ylo-1 trp-2. Linkage is scored among the progeny from black ascospores, which are mostly ws+. Efficiency is decreased slightly because a few percent of m- ascospores darken on aging so as to resemble ws+ and be capable of germinating.

(Note: In Neurospora Newsl. 20, 1973, ocr-7 was listed incorrectly as a distal VIR marker. The supposed linkage in VI could not be confirmed, and map location of ocr-7 is still unknown.)