Correction to note on linkage data for new ser mutants in NN #21

J. B. Maxwell
California State University

F. Kline
California State University

R. S. Bengtson
California State University

Follow this and additional works at: http://newprairiepress.org/fgr

Recommended Citation

This Linkage, Data, Tester Strains and Notes on Stocks is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
Correction to note on linkage data for new ser mutants in NN #21

Abstract
Correction to note on linkage data for new ser mutants in NN #21

Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.
Kinsey, J.A. Three new \(p \)-fluorophenylalanine resistant (\(fpr \)) mutants.

Three previously unreported \(fpr \) mutants have been isolated in my laboratory. \(fpr-3 \) and \(fpr-4 \) were isolated as \(p \)-fluorophenylalanine (FPA) resistant mutants on \(su(mtr) \) background, \(fpr-3 \) in \(su(mtr) \) (18-11) and \(fpr-4 \) in \(su(mtr) \) (17-2). \(fpr-5 \) was isolated in the wild type strain 74-OR23-1A background. All three mutants are characterized by resistance to FPA on solid media at a concentration of 10 \(\mu \)g/ml, which is completely inhibitory to wild type. Table 1 compares the growth of the three new mutants with that of \(fpr-1 \), \(mtr \) (10d) and 74-OR23-1A on various media.

\(fpr-3 \) is on linkage group III, close to the \(trp-1 \) locus. Spores that did not require tryptophan were isolated from a cross of \(trp-1 \) (10575) \(x \) \(fpr-3 \) and tested for recombination between \(trp-1 \) and \(fpr-3 \). From there tests \(fpr-3 \) appears to be 0.35 centimorgans from \(trp-1 \) (568 \(trp^+ \) spores tested; germination 96%). Segregation for \(trp-1 \) and \(fpr-3 \) in 100 random spores was normal.

\(fpr-4 \) is on linkage group V. Linkage was estimated by a plating technique. \(fpr-4 \) and \(inl \) appear to be 11 centimorgans apart. On the basis of the segregation of an unselected marker (\(pob-1 \)) in recombinants, \(fpr-4 \) appears to be distal to \(inl \).

\(fpr-5 \) is on linkage group I. Two crosses of \(fpr-5 \) to \(al-2 \) were analyzed, with 28% recombination in one cross (total of 60 random spores tested; 87% germination) and 22.5% recombination (80 spores; 96% germination). Segregation of a third marker (\(arg-6 \)) indicated that \(fpr-5 \) is proximal to \(al-2 \).

\(fpr-3 \) has normal amino acid uptake through both System I and System II. (Systems defined by Pall (1969 Biochim. Biophys. Acta 173: 113)). Amino acid uptake of \(fpr-4 \) and \(fpr-5 \) has not been tested.

Table 1. Growth response of \(fpr \) mutants

<table>
<thead>
<tr>
<th></th>
<th>Minimal</th>
<th>indole</th>
<th>indole</th>
<th>FPA</th>
<th>4MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>mtr (10d)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(fpr-1)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(fpr-3)</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>(fpr-4)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(fpr-5)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

All growth tests were performed on Vogel's Medium N agar with 1.5% sorbose, 0.1% glycerol and 0.1% glucose. The concentration of FPA was 10 \(\mu \)g/ml; indole was 50 \(\mu \)g/ml and 4-methyltryptophan (4MT) was 60 \(\mu \)g/ml. Good growth is scored +; poor growth −; no growth 0.

We wish to correct an error that was made in reporting the crosses used to study \(ser-5 \) (JBM-9), described in Maxwell et al. 1974 NN #21.

It was incorrectly stated that the crosses used were: Stock \(A; se \) (JBM-9); cot-l (C102d) was crossed to FGSC \(#190; a; se \) (5801), \(trp-1 \) (10575) and to FGSC \(#116; a; ser-1 \) (H605).

The correct description of the crosses is: A sexual reisolate of \(se \) (JBM-9) of genotype \(a; se \) (JBM-9); cot-l (C102d) was crossed to FGSC \(#190; A; se \) (5801), \(trp-1 \) (10575) and to FGSC \(#116; A; ser-1 \) (H605).

The source of the sexual reisolate of \(ser \) (JBM-9) was a cross of the original mutant to FGSC \(#333; a; cot-1 \) (C102d); \(inl \) (37401); \(y10 \) (Y30539y); \(mt \) (C86).

Maxwell, J.B., F. Kline and R.S. Bengtson. Correction to note on linkage data for new \(ser \) mutants in NN #21.

It was incorrectly stated that the crosses used were: Stock \(A; se \) (JBM-9); cot-l (C102d) was crossed to FGSC \(#190; a; se \) (5801), \(trp-1 \) (10575) and to FGSC \(#116; a; ser-1 \) (H605).

The correct description of the crosses is: A sexual reisolate of \(se \) (JBM-9) of genotype \(a; se \) (JBM-9); cot-l (C102d) was crossed to FGSC \(#190; A; se \) (5801), \(trp-1 \) (10575) and to FGSC \(#116; A; ser-1 \) (H605).

The source of the sexual reisolate of \(ser \) (JBM-9) was a cross of the original mutant to FGSC \(#333; a; cot-1 \) (C102d); \(inl \) (37401); \(y10 \) (Y30539y); \(mt \) (C86).