A simple expedient for obtaining large quantities of Neurospora

M. D. Garrick

Follow this and additional works at: http://newprairiepress.org/fgr

Recommended Citation
https://doi.org/10.4148/1941-4765.1970

This Technical Note is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cadis@k-state.edu.
A simple expedient for obtaining large quantities of Neurospora

Abstract
Large scale growth in carboys

Creative Commons License

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.
Procedures have been developed to permit aseptic withdrawal and oddition of media in carboys to facilitate the preparation of large batches of Neurospora mycelium for enzyme studies. Two-gallon polypropylene bottles were modified by inserting a polypropylene tubing special order by Laboratory Plasticware Fabricators, Kansas City, Mo.). Rubber tubing was then attached to the bottle with a Hoffman clump.

Neurospora was grown from a conidial inoculum in these carboys at 30°C with vigorous aeration from on aseptically filtered bubbler system according to the method of Mohler and Suskind (1960 Biochim. Biophys. Acta 43: 288) except that after three days of growth the mycelium were harvested via aseptically filtered tubulation, leaving behind about 10% of the culture as an inoculum. The tubulation was then connected to the inflow of air and turgor of carboy of fresh medium which was allowed to enter under gravity flow. To prevent contamination during harvesting, the flow of fresh medium, the aeration can be stopped. Collection and restoration was repeated daily for as long as desired. Occasionally, when it was evident that the mycelium were in clumps large enough to clog the tubulation, the flow of harvest was continued; but aeration must be continued; but aeration was allowed to increase the rate of addition of fresh medium as long as desired. Occasionally, when it was evident that the mycelium were in clumps large enough to clog the tubulation, the flow of harvest was continued; but aeration must be continued; but aeration was allowed to increase the rate of addition of fresh medium as long as desired. Occasionally, when it was evident that the mycelium were in clumps large enough to clog the tubulation, the flow of harvest was continued; but aeration must be continued; but aeration was allowed to increase the rate of addition of fresh medium as long as desired.

Typically, using strain C-B4 (hist-1) grown on medium N (Vogel 1956 Microbial Genet. Bull. 13: 42) supplemented with 53 mg of L-histidine/liter, this method yields 2.6 ± 0.2 g dry weight of mycelium/l of medium per day, while growing batches from conidial inocula once every three days yields a total of 2.9 ± 0.2 g dry weight of mycelium/l. Since only 90% of the culture is being harvested in order to leave on inoculum, the daily yield is approximately 2.4 times the quantity of Neurospora that can be obtained growing batches once every three days. The tryptophan synthetase activities in extracts of the powders (Mohler and Suskind, loc. cit.) were 0.29 ± 0.04 units/mg and 0.27 ± 0.02 units/mg, respectively. Thus, for a little added investment of effort, one can obtain a 2.4-fold increase in yield per day of growth with no change in the quality of the material. Similar results may be obtained with other strains, with the amount or timing of the harvesting modified according to the growth rate.


for genetic mapping studies at many loci in Neurospora, as well as in other organisms which form heterocaryons producing multi-nucleate conidio and in other types such as yeast or Aspergillus which produce diploid heterozygous single cells or conidio.

Double mutants within the hist-3 region have been obtained by a technique utilizing heterocaryons similar to that described by de Serres and Osterbind (1962 Genetics 47: 793). This procedure makes possible the recovery of double mutants within single genes (cistrons) or within operon-type systems. This technique should be of general applicability for genetic mapping studies at many loci in Neurospora, as well as in other organisms which form heterocaryons producing multi-nucleate conidio and in other types such as yeast or Aspergillus which produce diploid heterozygous single cells or conidio.

Basically, the procedure in Neurospora involves forming a heterocaryon between two complementing mutants within the same cistron or operon with each of the two strains carrying a different, unrelated biochemical mutation. Conidia from such a heterocaryon are then treated with an appropriate mutagen, subjected to the filtration concentration procedure on minimal medium and then plated on minimal medium containing only the growth supplement normally required by the single original complementing mutants. Under these conditions, selection will occur for heterocaryotic conidio containing induced double mutants (in either of the two parental nuclei) which now cannot complement with the original single parental type nucleus.

In the studies at the hist-3 region, two different heterocaryons were used (both mating type A). The first heterocaryon combined a hist-3A mutant (M127) carrying an adenine mutant ad-6 and a hist-3D mutant (M234) carrying a niacin forcing mutant nic-2 (43002). The second heterocaryon involved the same hist-3A parent with the ad-6 mutant and a hist-3B mutant (M1352) with the same hist-2 strain. The double mutants were detected by their inability to grow on minimal medium and were extracted from the heterocaryons either by conidial plating or by outcrossing. The second site mutants in the resulting homocaryotic double mutants were then characterized by their complementation pattern with the tester strains hist-3A (M127), hist-3B (M1352) and hist-3D (M234), by their mapping pattern with the other hist-3 mutants, and by enzymic assays for the three reactions in histidine biosynthesis controlled by the hist-3 region. By using this procedure, a large number of presumptive double hist-3 mutants were obtained. Many of these double mutants involved lethal mutants which could not be extracted from the heterocaryons either by plating or by outcrossing. Fifteen double mutants were completely characterized. Eight double mutants were recovered in the hist-3B strain. Five of these second site mutants were noncomplementing, two were hist-3A mutants, and one was a hist-3D mutant. Seven double mutants were recovered in the hist-3D strain. Six of the second site mutants were noncomplementing, and one was a hist-3A mutant. (Supported by AEC contract AT (30-1)-3098.)