1996

Effect of grain content on the nutritive value of whole-plant grain sorghum silage

B.S. Dalke
R.N. Jr. Sonon
D.L. Holthaus
K.K. Bolsen

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1996 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Effect of grain content on the nutritive value of whole-plant grain sorghum silage

Abstract
This experiment was conducted to determine the effect of grain content on the nutritive value of whole-plant grain sorghum silage. Silage dry matter (DM), organic matter (OM), and crude protein (CP) contents increased with increasing levels of grain in the reconstituted, whole-plant silages, whereas neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents decreased as the level of grain increased from 0 to 48%. When fed to sheep (used as a model), voluntary DM intake and DM and OM digestibilities increased in a linear manner, whereas ADF digestibility decreased with increasing level of grain. Crude protein and NDF digestibilities responded in a quadratic fashion to increasing grain content. These results suggest that the optimum level of grain in whole-plant grain sorghum silage is at least 48% of the DM in a high silage-based ration.

Keywords
Cattlemen's Day, 1996; Kansas Agricultural Experiment Station contribution; no. 96-334-S; Report of progress (Kansas State University. Agricultural Experiment Station and Cooperative Extension Service); 756; Beef; Grain sorghum; Silage; Silage grain content; Silage nutritive value

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
B.S. Dalke, R.N. Jr. Sonon, D.L. Holthaus, K.K. Bolsen, and Matthew A. Young

This Research Report article is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol0/iss1/574
EFFECT OF GRAIN CONTENT ON THE NUTRITIVE VALUE OF WHOLE-PLANT GRAIN SORGHUM SILAGE

M. A. Young, B. S. Dalke, R. N. Sonon, Jr., D.L. Holthaus, and K. K. Bolsen

Summary

This experiment was conducted to determine the effect of grain content on the nutritive value of whole-plant grain sorghum silage. Silage dry matter (DM), organic matter (OM), and crude protein (CP) contents increased with increasing levels of grain in the reconstituted, whole-plant silages, whereas neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents decreased as the level of grain increased from 0 to 48%. When fed to sheep (used as a model), voluntary DM intake and DM and OM digestibilities increased in a linear manner, whereas ADF digestibility decreased with increasing level of grain. Crude protein and NDF digestibilities responded in a quadratic fashion to increasing grain content. These results suggest that the optimum level of grain in whole-plant grain sorghum silage is at least 48% of the DM in a high silage-based ration.

(Key Words: Grain Sorghum, Silage, Silage Grain Content, Silage Nutritive Value.)

Experimental Procedures

DeKalb 42Y grain sorghum was planted on June 7 near the Kansas State University campus at Manhattan in Reading silt loam soil at a seeding rate of approximately 35,200 plants per acre. Anhydrous ammonia was applied prior to planting at 100 lb per acre. Furadan 15G insecticide was applied in the furrow at planting, and Ramrod atrazine was applied as a preemergence herbicide. The hybrid was grown under dryland conditions and harvested at the late-dough stage of kernel maturity.

Three days before harvest, 30 randomly selected whole plants were taken from a cross section of the experimental plot. The fresh plants were weighed and separated into head and stover fractions. Fresh weights of the separated parts were recorded, and samples of each were dried to determine their approximate proportions in the whole-plant DM.

The remaining plants were harvested on September 6. The heads were removed by hand, leaving the stover portion. The heads and stover were chopped separately with a FieldQueen, precision, forage harvester. The chopped heads and stover were combined to provide 12, 24, 36, and 48% grain in the reconstituted material (DM basis) and mixed in a Harshfi mixer wagon. Stover without grain was also used. All silages were made in polyethylene lined, 55-gallon drum, pilot-scale silos.

Introduction

Grain sorghum hybrids commonly are selected for grain yield potential and not necessarily for their silage traits. Previous research has shown that sorghum hybrids (both grain and forage) that contain a high proportion of grain in the whole plant DM are generally superior nutritionally to those with a low grain content (KAES Reports of Progress 678, page 16 and 704, pages 74 and 77).

We compared an all-stover grain sorghum silage (grain removed) with silage reconstituted to contain approximately 12 to 48% grain (DM basis).
After about 90 days of storage, a voluntary intake and digestion trial was conducted to determine the nutritive value of the five silages. Because quantities of silage were too small for cattle, sheep were used as a model. Thirty wether lambs were blocked by weight and individually housed in metabolism crates, which were located in a climate controlled room. The five silages were assigned randomly within each block. Rations contained 90% silage and 10% supplement (DM basis) and were formulated to provide 11.0% CP (DM basis) with ground corn, soybean meal, and urea. Rations supplied equal amounts of calcium; phosphorus; trace minerals; and vitamins A, D, and E. The trial consisted of a 7-day adaptation, 7-day voluntary intake, 2-day transition, and 5-day total fecal collection phases. During the transition and collection phases, all lambs were restricted to 90% of their mean voluntary DM intakes.

Results and Discussion

The pH, DM content, and chemical composition of the five silages are presented in Table 1. All silages were well preserved, as evidenced by low pH values. Silage DM, OM, and CP contents increased, whereas NDF and ADF contents decreased with increasing levels of grain in the reconstituted silages.

Voluntary DM intake and digestibilities of DM, NDF, and ADF are shown in Figures 1 through 4, respectively. Digestibilities of CP and OM are not shown. Voluntary DM intake and DM and OM digestibilities increased in a linear manner with stepwise increases in the grain content in the reconstituted silages. Crude protein and NDF digestibilities responded in a quadratic fashion to increasing levels of grain. Acid detergent fiber digestibility increased slightly between the 0 and 12% levels of grain and then decreased gradually as the level of grain increased to 48%.

The optimum level of grain in the reconstituted, whole-plant, grain sorghum silages was at least 48%, at which DM intake was highest (53.8 g per kg BW75) and DM and OM digestibilities reached their maxima (64.6 and 65.1%, respectively). These results are consistent with a previous study in which the optimum level of grain in whole-plant corn silage to maximize the nutritive value was about 52.5% (KAES Report of Progress 704, page 70).

<table>
<thead>
<tr>
<th>Grain Content, % of the Whole-Plant Silage</th>
<th>pH</th>
<th>DM</th>
<th>CP</th>
<th>NDF</th>
<th>ADF</th>
<th>OM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>% of the silage DM</td>
</tr>
<tr>
<td>0</td>
<td>3.84</td>
<td>24.7</td>
<td>6.1</td>
<td>59.3</td>
<td>32.4</td>
<td>85.3</td>
</tr>
<tr>
<td>12</td>
<td>3.80</td>
<td>29.7</td>
<td>6.6</td>
<td>55.0</td>
<td>31.0</td>
<td>87.6</td>
</tr>
<tr>
<td>24</td>
<td>3.76</td>
<td>31.9</td>
<td>7.5</td>
<td>57.7</td>
<td>30.1</td>
<td>89.0</td>
</tr>
<tr>
<td>36</td>
<td>3.75</td>
<td>35.6</td>
<td>8.1</td>
<td>52.1</td>
<td>27.2</td>
<td>90.4</td>
</tr>
<tr>
<td>48</td>
<td>3.74</td>
<td>41.7</td>
<td>8.3</td>
<td>40.3</td>
<td>21.6</td>
<td>90.8</td>
</tr>
</tbody>
</table>

*DM = dry matter, CP = crude protein, NDF = neutral detergent fiber, ADF = acid detergent fiber, and OM = organic matter.
Figure 1. Effect of Grain Content on Voluntary DM Intake by Lambs. MBW is BW^{0.75}.

Figure 2. Effect of Grain Content on DM Digestibility by Lambs.

Figure 3. Effect of Grain Content on NDF Digestibility by Lambs.

Figure 4. Effect of Grain Content on ADF Digestibility by Lambs.