1993

Storage losses in net-wrapped, large, round bales of alfalfa hay

R.K. Taylor
D.L. Kueck
C.E. Addison

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1993 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Storage losses in net-wrapped, large, round bales of alfalfa hay

Authors
R.K. Taylor, D.L. Kueck, C.E. Addison, Dale A. Blasi, Thomas Mark Maxwell, and James P. Shroyer

This research report is available in Kansas Agricultural Experiment Station Research Reports:
https://newprairiepress.org/kaesrr/vol0/iss1/696
STORAGE LOSSES IN NET-WRAPPED, LARGE, ROUND BALES OF ALFALFA HAY1,2

R. K. Taylor3, D. A. Blasi4, D. L. Kueck5, T. M. Maxwell5, C. E. Addison5, and J. P. Shroyer6

Summary

Net- and twine-wrapped alfalfa hay bales were stored from July, 1990 to April, 1991 in three Kansas counties (Reno, Saline, and Stafford). Dry matter losses and changes in acid detergent fiber and acid detergent insoluble nitrogen levels during storage were not significantly different between net- and twine-wrapped bales. Although a significant difference in dry matter recovery between inside and outside bale storage occurred in Saline County, it was not considered important because all recoveries were high. No significant differences in ADF or ADIN increases were found between initial core samples and samples from the outer 4 in. of the bales at the end of storage. The minimal deterioration and weathering were probably due to below average rainfall (less than 14 in.) during the 9-mon. storage period. Net wrapping is probably not justified on the basis of reducing storage losses in low rainfall areas.

(Key Words: Alfalfa, Hay, Round Bales, Storage.)

Introduction

Large round bales are a popular hay packaging system because of high capacities, and the fact that they can be handled by one person. Because bales are typically stored outside, the cost of owning a storage structure is eliminated. However, round bales are not easily stacked, so long distance transportation and inside storage are not as efficient as with square bales.

Net or mesh wrapping of large round bales is becoming a popular alternative to twine tying. It takes less time to apply, so baler capacity is increased. In addition, net-wrapped bales appear better contained with a smoother exterior, which should improve transportability and minimize rainfall penetration. Our objective was to determine the effects of net wrap and plastic twine on preservation of quality of large round bales of alfalfa hay during storage.

1Appreciation is expressed to C.K. Ranch, Brookville; Spare Farms, St. John; and Tom Beal, Hutchinson for cooperating in this study.

2Appreciation is expressed to John Deere Ottumwa Works, Ottumwa, IA for the use of a baler and Exxon Chemical, Kingman for supplying net wrap.

3Department of Agricultural Engineering.

4Extension Livestock Specialist, South Central Kansas.

5Extension Agent, Agriculture in Reno, Saline, and Stafford counties, respectively.

6Department of Agronomy.
of each wrapping material were stored either inside or outside. Inside storage was not available in Stafford County, so bales were placed on pallets and covered with a plastic tarp. Each bale was weighed and core sampled before storage. Bales stored outside were stacked tightly, end-to-end in north-south rows in a well drained area with approximately 6 ft between rows. Bales were removed from storage in April, 1991 and were weighed and core sampled. In addition, all bales stored outside were sampled to a depth of 4 in. from the surface on the sides and top.

Results and Discussion

The precipitation in all three counties was below average for the storage period. Table 1 lists the DM recovery, average initial moisture content, and initial and final ADF and ADIN levels. There were no significant differences in DM recovery among wrapping treatments for individual counties. A statistical difference between storage method was found in Saline County (P < .05). However, it was of little practical significance, because all DM recoveries were high.

Although no interaction or significant differences in ADF changes were found among treatments (P > .05), ADF increases were generally greater for twine-wrapped bales stored outside than their net-wrapped counterparts. No interactions or significant differences among treatments were found for ADIN changes.

The bales stored outside were also compared based on samples taken from the outer 4 inches. No significant differences in ADF or ADIN were found between wrapping materials in any county. No significant differences were found in ADIN levels between wrapping materials.

<table>
<thead>
<tr>
<th>County</th>
<th>Bale Wrap</th>
<th>Storage</th>
<th>DM Recovery</th>
<th>Initial Moisture, %</th>
<th>ADF Initial Core</th>
<th>ADF Final Core</th>
<th>ADF Final 4 in.</th>
<th>ADIN Initial Core</th>
<th>ADIN Final Core</th>
<th>ADIN Final 4 in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reno</td>
<td>Net</td>
<td>Inside</td>
<td>95.8</td>
<td>21.4</td>
<td>37.7</td>
<td>37.5</td>
<td>1.35</td>
<td>1.58</td>
<td>1.31</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outside</td>
<td>95.4</td>
<td>21.6</td>
<td>35.6</td>
<td>36.3</td>
<td>39.1</td>
<td>1.31</td>
<td>1.57</td>
<td>1.37</td>
</tr>
<tr>
<td>Twine</td>
<td>Inside</td>
<td>94.7</td>
<td>19.6</td>
<td>37.6</td>
<td>39.1</td>
<td>1.16</td>
<td>1.43</td>
<td>1.21</td>
<td>1.88</td>
<td>1.58</td>
</tr>
<tr>
<td>Outside</td>
<td>96.9</td>
<td>20.5</td>
<td>37.7</td>
<td>39.4</td>
<td>39.9</td>
<td>1.21</td>
<td>1.88</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline</td>
<td>Net</td>
<td>Inside</td>
<td>99.9</td>
<td>9.6</td>
<td>30.6</td>
<td>32.3</td>
<td>.89</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outside</td>
<td>97.9</td>
<td>9.6</td>
<td>34.4</td>
<td>35.0</td>
<td>37.0</td>
<td>.89</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Twine</td>
<td>Inside</td>
<td>99.8</td>
<td>8.8</td>
<td>32.6</td>
<td>34.0</td>
<td>.98</td>
<td>1.05</td>
<td>1.03</td>
<td>1.28</td>
<td>1.35</td>
</tr>
<tr>
<td>Outside</td>
<td>97.6</td>
<td>8.5</td>
<td>32.1</td>
<td>33.7</td>
<td>36.4</td>
<td>1.03</td>
<td>1.18</td>
<td>1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stafford</td>
<td>Net</td>
<td>Inside</td>
<td>99.2</td>
<td>11.9</td>
<td>28.7</td>
<td>30.7</td>
<td>.77</td>
<td>.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outside</td>
<td>98.3</td>
<td>11.4</td>
<td>30.0</td>
<td>32.0</td>
<td>33.5</td>
<td>30</td>
<td>1.24</td>
<td>1.06</td>
</tr>
<tr>
<td>Twine</td>
<td>Inside</td>
<td>98.9</td>
<td>12.3</td>
<td>26.1</td>
<td>27.0</td>
<td>.70</td>
<td>.68</td>
<td></td>
<td>.81</td>
<td>.92</td>
</tr>
<tr>
<td>Outside</td>
<td>99.2</td>
<td>12.7</td>
<td>27.3</td>
<td>29.8</td>
<td>30.7</td>
<td>.81</td>
<td>.92</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As a % of the initial hay wt (DM basis).