Neurospora genetic nomenclature

R. W. Barratt

D. D. Perkins

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

This Note on Nomenclature and Origin of Neurospora Stocks is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
Neurospora genetic nomenclature

Abstract
Neurospora genetic nomenclature

This note on nomenclature and origin of neurospora stocks is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol8/iss1/30
In 1952 a group at Stanford University informally consulted geneticists and biochemists using *Neurospora* in laboratories concerning nomenclature. While no specific and rigid set of standard rules emerged, a set of recommendations drawing on suggestions from various workers was prepared (Barratt 1954 Microbial Genet. Bull. 9:20). A brief section on nomenclature and symbols was also included in a 1954 review paper (p. 28, Barratt et al. Advan. Genet., 6: 1). Terminology has since evolved, and it is perhaps time to restate the principles of nomenclature used by the Fungal Genetics Stock Center (FGSC) in the preparation of stock lists (Barratt and Ogata 1964 N Natl. 5:24).

1. **Mutant phenotype and symbol**: Each new mutant when first described in publication is given a descriptive name and a symbol derived from the name. The stock from which the mutant was obtained should also be specified, together with the mode of origin (spontaneous, specific mutagen, etc.) evidence for a single-gene difference from the parent stock, and a unique isolation number (see section 3). The mutant name is preferably a single descriptive word, e.g. albino, adenine. Nutritional or biochemical mutants are named for the terminal compound in the series, e.g., all mutants in the ornithine-arginine pathway are named arginine. In publication, where it is desirable to indicate metabolic block involved, any convenient code symbols may be used, provided synonymy with established locus symbols is given once in the paper (e.g. "In this paper arg-3 will be called cit, and arg-6 will be called orn."). Where the biosynthetic pathway is not clear, a mutant name is given for the defined substance first recognized to fulfill the requiremenr.g., phoe-1. (For brevity, the suffix "less" is omitted from the names of nutritional mutants.)

2. **Designation of loci**: Mutant strains having the same phenotype but representing mutations at different loci (mimic loci) are distinguished by a number following the symbol on the same line, and separated from it by a hyphen, e.g., rho-1, rho-2, rho-3, for colonial-1, etc., while others prefer to follow the Drosophila usage (as fl. fld for fluffy and yellowoid). Where new numbers are to be added to a preexisting series, it would be desirable to check with the FGSC prior to publication, to avoid duplicate assignments of a given number. Where assignment of a locus number following the symbol is not yet warranted, because adequate tests have not been completed, the locus is designated provisionally by the mutant symbol followed by the isolation number in parenthesis, as arg(S12297) or cyst(U156). New locus numbers should be specified only when a reasonable amount of information has been obtained about the behaviour in a given series. This is particularly important for the nonallelic complementation (e.g., ad-4) of alleles having apparently different metabolic block (e.g., tryp-3)

3. **Designation of alleles**: Wild-type alleles are designated simply +, or where ambiguity might result the specific locus symbol is used, followed by a superscript, e.g., arg-9. An asterisk is used to specify the wild-type allele at the originine-9 locus. Mutant alleles at a given locus are identified by isolation numbers, e.g., ad-6 (28610) and ad-8 (35301).

Each mutant of independent origin should be assigned a unique isolation number by the investigator concerned, at the time of first publication. Numbers without prefixes or underlines indicate the original isolation series of Beadle and Tatum. Subsequently many laboratories or independent workers have used an identifying prefix letter or letters, e.g. S for Stanford, K for Cotcheside. (A list of these prefixes is given in NN#5:78, 1965.) The lower case letters p and t are used after the isolation number to indicate pH- and temperature-sensitive alleles. Other lower case letters following the isolation number are used to distinguish between two or more mutants recovered from the same isolate, e.g. Y30539 f or riboflavin end Y30539 y for yellow.

Alleles governing differences in sensitivity and resistance are best distinguished by raised lower case letters s or r, insasmuch as it is usually not clear to a reader which is the mutant and which the wild type: e.g., cr-1, cr-2, cr-3, or cr-4. Similarly the sulfanilamide dependent strain becomes sod. In publication, each significant mutant used should be identified by a superscript test number or isolation number; locus number alone is not adequate for most purposes in view of differences between alleles. Where a series of alleles is used, any convenient abbreviated code may be used to distinguish alleles, provided that actual isolation numbers are specified at least once in the paper.

4. **Multiple mutant stock**: In designating genotypes of multiple mutant stock, loci are listed in their order on the map from left to right, beginning with linkage group 1. Markers in different linkage groups are separated by a semicolon. The mating type allele symbol (A or a) is often listed last in a series, without regard to map order.
5. Heterocaryons: The genotypes of the components of a heterocaryon should be clearly designated and connected by a plus sign (+), e.g. \(\text{ade-43 pe-1 II } + \text{nic-1 inos} \).

6. Aberrations: Stocks which are known to contain aberrations are designated by the symbols \(\text{ob. or T or ln} \) if known to be a translocation or inversion placed after the isolation number. When the nature of a chromosome rearrangement is known, the aberration itself is symbolized, adapting to *Neurospora* the conventions used for Drosophila (Bridges and Brehme 1944 Carnegie Inst. Wash. Publ. 552:4). For example, \(\text{al-1} \) strain 4637T contains a reciprocal translocation between linkage groups I and II, which has never been separated from the \(\text{albino-1} \) phenotype; it is symbolized: \(\text{T (I,II)al-1}\). The original \(\text{arg-1}\) strain H4250 contains a pericentric inversion in linkage group I (separable from the requirement). The inversion free of the arginine requirement is symbolized: \(\text{ln (I) (H4250)}\). \(\text{T (III;VI)}\) is the first translocation identified involving linkage groups III and VI. (This aberration possesses no phenotype or isolation number.) In cases where the aberration is reparable from a mutant locus, derivative stocks with and without the aberration are often both in the FGSC.

Depending on the context and on existing knowledge, the arms of the linkage groups may or may not be designated, e.g. \(\text{T (I,II)al-1}\) or \(\text{T (III;VI)al-1}\). The numbers used are those of linkage groups, rather than chromosomes, because unambiguous genetic identification has preceded reliable cytological identification.

7. Priority in nomenclature: In general, the first published and substantiated locus name, symbol, and locus number should be considered as having priority, and should be adopted for general use. (This applies for publications since 1954.) Prior to 1954, several competing symbols were often in use. Inasmuch as no uniform usage had been established at the time, rules of priority were in many cases violated by Barratt et al. (1954 Adv. Genet. 6:1) in an attempt to introduce a coherent system: thus for example \(\text{tit-1}\) and \(\text{arn-2}\) become \(\text{arg-3}\) and \(\text{arg-5}\). With a few exceptions, the symbols adopted at that time have proved acceptable and are in general use.

Inasmuch as *Neurospora* Newsletter is generally available to all *Neurospora* workers, it should probably be considered a publication for purposes of establishing priority.

Changes of nomenclature. Some locus names, symbols and numbers, although validly established by priority, will inevitably be found unsuitable, either because of incorrect or incomplete information at the time of first publication, or for reasons of convenience or general preference. In such cases, a new symbol can be proposed and substituted, e.g. \(\text{G}\) for *Gulliver* is now \(\text{gul-I}\) and \(\text{gul}\) is now an allele of \(\text{arg-12}\). Reasons for doing so should be clearly stated. The old symbol and locus number should clearly be stated to be synonymous with the new one, and to avoid confusion the old symbol and number should never be reused to designate any new mutant, i.e., a locus symbol once used in publication should never be considered to be vacated and available for reuse. Examples: \(\text{me-4 (39814)}\) (Barratt et al. 1954) is really a cysteine mutant, not a methionine mutant; it has been renamed \(\text{cysteine-10 (cys-10)}\) by Murray (1965 Genetics 52:801). \(\text{me-4}\) and \(\text{cys-10}\) are synonyms. Although \(\text{cys-10}\) is preferred for 39816, the symbol \(\text{me-4}\) should never in the future be used to designate another locus in the methionine series. Similarly, \(\text{cyr-6 (86801)}, \text{cyr-7 (P120)}, \text{cyr-8 (P160)}\) have been lost, and their allelism with other cysteine loci cannot be established. These locus-notions, having once been used, are preempted and should never be used to designate new mutants in the future (see Murray 1965).

In some cases, genes assigned separate locus numbers have subsequently either turned out to be alleles of the same locus, or it becomes uncertain whether they are at the same or at distinct but adjacent loci (e.g. \(\text{al-1}, \text{al-2}; \text{thr-2}, \text{thr-3}; \text{pxd-1}, \text{pxd-2}; \text{me-1}, \text{me-9}; \text{arg-4}, \text{arg-7}\)). Suggestions for appropriate nomenclature revisions can best be made by the investigators concerned as each situation is clarified. If both genes prove to be a single locus, one of the locus numbers should be retained and the other relegated to synonymy.

8. Wild-type and inbred strains: From the outset, wild-type strains of widely differing genetic backgrounds have been used (see Barratt 1954 Microbial Genet. Bull. 11:5). In the early research many of these strains were intercrossed more or less at random and the pedigree of many of the stocks containing widely used reference alleles is uncertain.

The wild types now most commonly used are:

- \(\text{E5236A and E5297a (Emerson wild types)}\)
- \(\text{EmA and EmB (Derived from the above by D. G. Catchside)}\)
- \(\text{LA and Lo (Called Lindegren wild types)}\)
- \(\text{ST74A and ST73a (St. Lawrence’s “standard” stocks, commonly called St. Lawrence wild types)}\)
- \(\text{74-OR23-1A and 74-OR8-1a (Oak Ridge wild types, derived from the above by F. J. deSerres)}\)

The origin of various wild-type strains is summarized in NN\#2:24 (1962). (See also correction of 74A23-1A (incorrect) to 74-OR23-1A in NN\#3:19 (1963).)

In designating generations of inbreeding, the first generation progeny from an intercross between two \(p_{1}\) strains is designated \(f_{1}\) (lower case because haploid). Progeny of \(f_{1} \times f_{1}\) are \(f_{2}\); of \(f_{2} \times f_{2}\) are \(f_{3}\), etc.

Progeny of \(f_{1} \times p_{1}\) are designated \(b_{1}\) (backcross generation 1); of \(b_{1} \times p_{1}\) are \(b_{2}\), etc. (Please note correction: In Barratt 1982 NN\#2:25, \(F_{10}\) should read \(b_{10}\)).

Great strides have been made toward a uniform terminology for *Neurospora*. However, the reader may note that certain ambiguities still exist, especially in the case of suppressors. Suitable terminology will evolve as the need becomes critical.

- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire and Department of Biological Sciences, Stanford University, Stanford, California.