Inflammatory response of feedlot cattle to clostridial vaccination: a comparison of 7-way bacterin-toxoid and C&D toxoid

Gerald L. Stokka

Robert T. Brandt Jr.

A.J. Edwards

M.F. Spire

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1993 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Inflammatory response of feedlot cattle to clostridial vaccination: a comparison of 7-way bacterin-toxoid and C&D toxoid

Abstract
Twenty-four finishing steers (758 lb) were subcutaneously vaccinated and revaccinated 31 days later with 1) sterile saline, 2) a clostridial perfringens C&D toxoid, or 3) a 7-way clostridial bacterin-toxoid to evaluate the effects of vaccine type on inflammatory response in feedlot cattle. Injection site reactions were most severe (P<.05) and persistent for 7-way bacterin-toxoid and were accompanied by elevated (P<.05) blood haptoglobin levels indicative of acute inflammation. Revaccination with 7-way bacterin-toxoid reduced (P<.05) feed consumption for a 4-day period postvaccination. Although some reactions were severe, they appeared transient because blood parameters and volume of injection site reactions returned to baseline levels 25 to 60 days after injection. Performance over the entire feeding period was not significantly altered by treatment. We strongly recommend that clostridial products be used subcutaneously only, to minimize potential damage to carcass tissue from intramuscular injection.

Keywords
Cattlemen's Day, 1993; Kansas Agricultural Experiment Station contribution; no. 93-318-S; Report of progress (Kansas State University. Agricultural Experiment Station and Cooperative Extension Service); 678; Beef; Vaccination; Cattle; Injection site

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
Gerald L. Stokka, Robert T. Brandt Jr., A.J. Edwards, M.F. Spire, and J.E. Smith
INFLAMMATORY RESPONSE OF FEEDLOT CATTLE TO CLOSTRIDIAL VACCINATION: A COMPARISON OF 7-WAY BACTERIN-TOXOID AND C&D TOXOID

G. L. Stokka¹, R. T. Brandt, Jr., A. J. Edwards¹, M. F. Spire¹, and J. E. Smith²

Summary

Twenty-four finishing steers (758 lb) were subcutaneously vaccinated and revaccinated 31 days later with 1) sterile saline, 2) a clostridial perfringens C&D toxoid, or 3) a 7-way clostridial bacterin-toxoid to evaluate the effects of vaccine type on inflammatory response in feedlot cattle. Injection site reactions were most severe (P<.05) and persistent for 7-way bacterin-toxoid and were accompanied by elevated (P<.05) blood haptoglobin levels indicative of acute inflammation. Revaccination with 7-way bacterin-toxoid reduced (P<.05) feed consumption for a 4-day period postvaccination. Although some reactions were severe, they appeared transient because blood parameters and volume of injection site reactions returned to baseline levels 25 to 60 days after injection. Performance over the entire feeding period was not significantly altered by treatment. We strongly recommend that clostridial products be used subcutaneously only, to minimize potential damage to carcass tissue from intramuscular injection.

(Key Words: Vaccination, Cattle, Injection Site.)

Introduction

Recent observations indicate that multiple clostridial bacterin-toxoids may contribute to localized inflammatory responses, depressed feed consumption postvaccination, and damage to carcass tissue. In addition to heightened inflammation, the impact of depressed feed consumption can be direct, resulting in reduced gain, or indirect, through digestive upsets. Any factor that contributes to an unstable consumption pattern can increase bunk management problems and increase morbidity or mortality from bloat or other digestive disorders. Therefore, the purposes of this research were to: 1) evaluate injection site reactions resulting from clostridial vaccination; 2) examine the inflammatory response associated with clostridial vaccination; and 3) evaluate the impact on appetite associated with clostridial vaccination.

Experimental Procedures

Twenty four crossbred steers were selected for uniformity of size and conformation from a group of 108. All cattle were processed on January 20, 1992 using a 7-way clostridial product in combination with Hemophilus somnus (Ultrabac® 7/Somubac™, SmithKline Beecham Animal Health, Exton, PA). On June 20, the calves received a 7-way clostridial booster. The steers were delivered to the KSU Beef Research Unit on June 30. On July 1 (day 1 of the trial), they were individually weighed (758 lb average), ear tagged, and randomly allotted to immunization treatments to be administered on day 15. Treatments were: 1) 5cc of sterile saline; 2) a clostridial vaccine consisting of the antigens of Clostridium perfringens type C&D in a 2cc dose (C & D; Ultrabac ® CD, SmithKline Beecham

¹Clinical Sciences, KSU College of Veterinary Medicine.

²Pathology and Microbiology, KSU College of Veterinary Medicine.
Animal Health, Exton, PA); and 3) a clostridial vaccine consisting of the antigens of
Clostridium chauvoei, sordellii, septicum, novyi, and perfringens type C&D in a 5cc dose
(7-way, Ultrabac® 7).

On the last day of the 14-day feedlot acclimation period, the steers were weighed,
blood was drawn, and any reactions from previous injections were noted. On the
following day (day 15), the steers were vaccinated according to the random allotment
they received on day 1.

All products were delivered subcutaneously using a skin tenting technique. Each animal
was injected using a new, sterile, 16-gauge 3/4-inch needle. The hair over the injection
site was clipped to identify the exact site of injection. The calves were weighed and bled
on days 18, 21, 25, 30, and 40 and weighed again on days 46, 61, 136 and at slaughter.
The second injection was given on day 46, on the left side of the neck. Blood analyses
included cell counts and concentrations of aspartate amino-transferase, creatine
phosphokinase, sorbitol dehydrogenase, gamma globulins, and haptoglobin. The length, width,
and height of the injection site reactions were measured. Steers were individually fed a corn-
based finishing diet formulated to contain 12% CP, 62 Mcal NEg, and 91 Mcal NEm/lb
during the trial.

Results and Discussion

Inflammatory response. White blood cell counts, segmented neutrophils, lymphocytes,
and gamma globulin levels all showed small increases in response to treatment, but re-
mained within or close to normal limits. Plasma protein and fibrinogen levels also showed slight increases but remained well
within normal limits. Blood haptoglobin levels were increased after injection in the C&D and
7-way treatment groups, whereas the sterile saline group showed no change over time
(Table 1). The response to C&D and 7-way injection was greatest on day 3 postinjection. An increase in haptoglobin level
is indicative of an acute inflammatory response.

Injection site reactions. Injection site reactions were noted in 100% of the clostridial-
vaccinated calves within 24 hours after administration. The injection reactions were
raised above the skin surface and varied in shape among animals. By day 3 when the sites
were measured, the average involvement was 219 cc in the 7-way group vs 78 cc in the C&D
group (Table 2; P<.05). No calves in the saline group developed injection site reactions.
At the time of slaughter, no significant palpable lesions remained in either clostridial
group.

Performance. Calf feed consumption
was not significantly impacted during the 4-
day period after the first injection, although
intake declined 1%, 2%, and 10% for the
saline, C&D and 7-way groups, respectively
(Table 3). Following the second injection,
consumption of the saline group increased
4%, whereas that of the C&D and 7-way
groups declined 8% and 20% (P<.05),
respectively. Although steer gains were not
significantly influenced by treatment, steers
in the 7-way group were 14 lb lighter at
slaughter than the saline-injected steers.

These data suggest that injection of
feedlot cattle with clostridial vaccines can
result in a transient, yet significant,
inflammatory response. Subcutaneous
injection-site reactions may persist for
months. Injection with 5 ml of 7-way bacter-
in-toxoid resulted in a more severe, longer
lasting reaction than injection with 2 ml of
C&D toxoid. Whether the reaction severity
in the 7-way group was from the antigens
themselves, or from higher levels of poten-
tially irritating vaccine adjuvants, is
unknown. Using clostridial products subcu-
taneously is strongly advised to minimize
potential damage to carcass tissue.
Table 1. Blood Haptoglobin Levels (mg/dl) over Time from Steers in Response to Injection with Sterile Saline, C & D Toxoid, or 7-Way Bacterin-Toxoid

<table>
<thead>
<tr>
<th>Day of trial</th>
<th>Preinjection:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saline</td>
<td>C & D</td>
<td>7-Way</td>
</tr>
<tr>
<td>Day 0</td>
<td>15.4</td>
<td>12.5</td>
<td>19.8</td>
</tr>
<tr>
<td>Postinjection:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 3</td>
<td>15.2<sup>a</sup></td>
<td>35.8<sup>b</sup></td>
<td>47.0<sup>b</sup></td>
</tr>
<tr>
<td>Day 6</td>
<td>12.8<sup>a</sup></td>
<td>14.5<sup>a</sup></td>
<td>26.6<sup>b</sup></td>
</tr>
<tr>
<td>Day 9</td>
<td>11.5</td>
<td>11.4</td>
<td>11.6</td>
</tr>
<tr>
<td>Day 15</td>
<td>15.4</td>
<td>11.4</td>
<td>11.7</td>
</tr>
<tr>
<td>Day 25</td>
<td>11.2</td>
<td>12.4</td>
<td>11.8</td>
</tr>
</tbody>
</table>

^{a,b}Means in a row with unlike superscripts differ (P<.05).

Table 2. Volume (cm³) of Injection Site Reactions over Time from Steers in Response to Injection with Sterile Saline, C & D Toxoid, and 7-Way Bacterin-Toxoid

<table>
<thead>
<tr>
<th>Day of trial</th>
<th>Postinjection:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saline</td>
<td>C & D</td>
<td>7-Way</td>
</tr>
<tr>
<td>Day 3</td>
<td>0<sup>a</sup></td>
<td>78<sup>b</sup></td>
<td>219<sup>c</sup></td>
</tr>
<tr>
<td>Day 6</td>
<td>0<sup>a</sup></td>
<td>52<sup>b</sup></td>
<td>113<sup>c</sup></td>
</tr>
<tr>
<td>Day 9</td>
<td>0<sup>a</sup></td>
<td>31<sup>b</sup></td>
<td>72<sup>c</sup></td>
</tr>
<tr>
<td>Day 15</td>
<td>0<sup>a</sup></td>
<td>21<sup>b</sup></td>
<td>75<sup>c</sup></td>
</tr>
<tr>
<td>Day 25</td>
<td>0<sup>a</sup></td>
<td>21<sup>b</sup></td>
<td>49<sup>c</sup></td>
</tr>
<tr>
<td>Day 31</td>
<td>0<sup>a</sup></td>
<td>8<sup>a</sup></td>
<td>51<sup>b</sup></td>
</tr>
<tr>
<td>Day 61</td>
<td>0<sup>a</sup></td>
<td>2<sup>a</sup></td>
<td>21<sup>b</sup></td>
</tr>
<tr>
<td>Slaughter</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

^{a,b,c}Means in a row with unlike superscripts differ (P<.05).

Table 3. Average Daily Feed Consumption (lb as-fed) by Steers during the Four-Day Preinjection and Four-Day Postinjection Periods

<table>
<thead>
<tr>
<th>Item</th>
<th>Saline</th>
<th>C & D</th>
<th>7-Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Injection:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preinjection</td>
<td>20.2 ± 3.3</td>
<td>22.4 ± 2.9</td>
<td>21.8 ± 2.9</td>
</tr>
<tr>
<td>Postinjection</td>
<td>20.0 ± 4.2</td>
<td>22.0 ± 3.5</td>
<td>19.8 ± 3.1</td>
</tr>
<tr>
<td>Second Injection:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preinjection</td>
<td>26.8 ± 2.9</td>
<td>26.8 ± 3.3</td>
<td>26.0<sup>a</sup> ± 2.6</td>
</tr>
<tr>
<td>Postinjection</td>
<td>27.9 ± 3.1</td>
<td>24.6 ± 2.2</td>
<td>20.9<sup>b</sup> ± 4.0</td>
</tr>
</tbody>
</table>

^{a,b}Means for a treatment within an injection period differ (P<.05).