1990

Relationship of milk production in Angus and Simmental cows with milk expected progeny differences (EPDs) and calf weaning weight

T.T. Marston
D.D. Simms
R.R. Schalles

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation
Marston, T.T.; Simms, D.D.; Schalles, R.R.; Zoellner, K.O.; Martin, L.C.; and Fink, G.M. (1990) "Relationship of milk production in Angus and Simmental cows with milk expected progeny differences (EPDs) and calf weaning weight," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 1. https://doi.org/10.4148/2378-5977.2262

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1990 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Relationship of milk production in Angus and Simmental cows with milk expected progeny differences (EPDs) and calf weaning weight

Abstract
Spring and fall calving Angus (n==86) and Simmental (n==96) cows at three different locations in Kansas were used to evaluate the relationships between milk production, Milk Expected Progeny Difference (Milk EPD), and calf weaning weight. A change of 1 lb in Milk EPD resulted in 4.95 lb change in calf weaning weight in Angus and 4.60 lb in Simmental. Each lb increase in Milk EPD predicted a 69.87 lb increase in total lactation milk production in Angus and 70.74 lb in Simmentals. Positive correlations were .40 and .64 between Milk EPD and total milk produced per lactation and .24 and .49 between Milk EPD and calf weaning weight for Angus and Simmental, respectively. Milk EPDs can be used as genetic selection tools to influence milk production levels and make corresponding changes in calf weaning weights.

Keywords
Cattlemen's Day, 1990; Kansas Agricultural Experiment Station contribution; no. 90-361-S; Report of progress (Kansas State University. Agricultural Experiment Station and Cooperative Extension Service); 592; Beef; Angus; Simmental; Milk; Lactation; Calf weaning weight; Milk expected progeny differences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors

This research report is available in Kansas Agricultural Experiment Station Research Reports:
https://newprairiepress.org/kaesrr/vol0/iss1/859
RELATIONSHIP OF MILK PRODUCTION IN ANGUS AND SIMMENTAL COWS WITH MILK EXPECTED PROGENY DIFFERENCES (EPDs) AND CALF WEANING WEIGHT

Summary

Spring and fall calving Angus (n=86) and Simmental (n=96) cows at three different locations in Kansas were used to evaluate the relationships between milk production, Milk Expected Progeny Difference (Milk EPD), and calf weaning weight. A change of 1 lb in Milk EPD resulted in 4.95 lb change in calf weaning weight in Angus and 4.60 lb in Simmental. Each lb increase in Milk EPD predicted a 69.87 lb increase in total lactation milk production in Angus and 70.74 lb in Simmentals. Positive correlations were .40 and .64 between Milk EPD and total milk produced per lactation and .24 and .49 between Milk EPD and calf weaning weight for Angus and Simmental, respectively. Milk EPDs can be used as genetic selection tools to influence milk production levels and make corresponding changes in calf weaning weights.

(Key Words: Angus, Simmental, Milk, Lactation, Calf Weaning Weight, Milk Expected Progeny Differences.)

Introduction

Milk production is a major factor influencing calf weaning weight. The ability to predict milk production is useful in improving calf weaning weight and would aid in matching milk production levels to the environment. The development of Milk EPDs has provided both commercial and purebred cattle producers with estimates of the milking ability of an individual's daughters expressed in lb of calf weaned. Milk EPDs predict the genetic difference in average 205-d weight of a individual's daughters' progeny related to milking ability. Because the industry is concerned about the validity of these predictions, we initiated this study to determine the relationships between Milk EPD, milk production, and calf weaning weight.

Experimental Procedures

Milk production in spring- and fall-calving, purebred Angus and Simmental cows was measured at three different locations. Milking took place at approximately 60, 120, and 180 d postpartum. On the day preceding each milking, cows and calves were separated for 4 to 6 hr.

1The authors express appreciation to Joe Mertz, Manhattan, Bob Dickinson, Gorham, and Henry Gardiner, Ashland, for their assistance in data collection. Further appreciation is expressed to the American Angus Association, St. Joseph, Missouri, and the American Simmenthal Association, Bozeman, Montana, for their financial support and for providing Expected Progeny Differences.
then placed together until all calves completed nursing and separated again. Approximately 12 hr following the separation, cows were injected IM with 40 IU of oxytocin to stimulate milk letdown and were immediately machine milked. Samples from each milking were analyzed by the Kansas Dairy Herd Improvement Association to determine butterfat, lactose, protein, and somatic cell count.

Twenty-four hr milk production was estimated by doubling the 12-hr production, which had been adjusted for time of separation from the calf. Daily milk production values were used to calculate lactation curves using the equation $Y(n) = Ae^{kn}$, where n = week of lactation, Y = daily milk production in kg, e = base of natural logarithms, and A and k are constants defining the shape of the lactation curve. Total milk production per lactation was estimated from each cow’s individual curve.

Spring calves were born from late February to mid April, and the cow/calf pairs were grazed on native bluestem pastures throughout the summer without creep feed. Fall Simmental calves were born from late August to early October; cow/calf pairs were supplemented with a milo-based energy ration and sudan hay as they grazed dormant short grass pasture and crop residues. In addition, fall Simmental calves received an energy creep feed. All calf weaning weights were measured at approximately 205 d of age.

Expected Progeny Differences were provided by the American Angus Association, St. Joseph, Missouri, and the American Simmental Association, Bozeman, Montana.

Results and Discussion

Correlations between milk production, calf weaning weight, and Milk EPD are presented in Table 25.1 by breed, location, calving season, and year. The positive correlations indicate that Milk EPDs can be used in predicting milk production. Similarly, cows that produced heavier calves at weaning possessed higher Milk EPDs. Environmental conditions affected total milk production and its relationships with calf weaning weight and Milk EPD, but we were unable to compute the magnitude of those effects.

A 1 lb change in Milk EPD resulted in 4.95 lb and 4.60 lb changes in Angus and Simmental calf weaning weights, respectively. Total milk production changed 69.87 lb in Angus and 70.74 lb in Simmental with each corresponding 1 lb change in Milk EPD.

Angus averaged 3,524 lb of milk production per lactation, with an avg Milk EPD of 1.92 lb. Simmentals averaged 3,773 lb of milk production per lactation, with an avg Milk EPD of 2.89 lb. Figure 25.1 represents the milk production predicted from Milk EPDs by breed.
Table 25.1. Correlations between Milk Production, Weaning Weight and Milk EPD by Location

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Angus</th>
<th>Simmental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sp88 A¹</td>
<td>F88 B¹</td>
</tr>
<tr>
<td>Total milk production and weaning weight</td>
<td>.61 .25 .40</td>
<td>.62 .23 .57</td>
</tr>
<tr>
<td>Total milk production and milk EPD</td>
<td>.42 .34 .38</td>
<td>.28 .77 .48</td>
</tr>
<tr>
<td>Milk EPD and weaning weight</td>
<td>.30 .17 .24</td>
<td>.44 .55 .55</td>
</tr>
</tbody>
</table>

¹A, B, and C represent different herd locations in the fall (F) and spring (Sp) of 1988 and 1989.

Figure 25.1. Relationship of Milk EPD and Total Milk Production