Yield and composition of grain sorghum stover

R. L. Vanderlip

L.R. Schneider

K.K. Bolsen

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

Vanderlip, R. L.; Schneider, L.R.; and Bolsen, K.K. (1974) "Yield and composition of grain sorghum stover," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 1. https://doi.org/10.4148/2378-5977.2772

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1974 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Yield and composition of grain sorghum stover

Abstract
Last year in Kansas approximately 3.8 million acres produced 243 million bushels of grain sorghum plus a large amount of forage left in the field as a potential source of feed for livestock. The objective of this report is to indicate the quantity of forage available after normal and early (high-moisture) harvest of sorghum grain.

Keywords
Cattlemen's Day, 1974; Report of progress (Kansas State University. Agricultural Experiment Station); 210; Beef; Grain sorghum; Forage; Yield

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Yield and Composition of Grain Sorghum Stover

R. L. Vanderlip¹, Larry R. Schneider¹, and K. K. Bolsen

Introduction

Last year in Kansas approximately 3.8 million acres produced 243 million bushels of grain sorghum plus a large amount of forage left in the field as a potential source of feed for livestock.

The objective of this report is to indicate the quantity of forage available after normal and early (high-moisture) harvest of sorghum grain.

Experimental Procedure

Effects of sorghum heights, harvest dates, and hybrids on grain and forage yield and quality were studied in 1971 and 1972 at the Agronomy Farm, Manhattan, and the South-central Kansas Experiment Field, Hutchinson. How heights effect grain and forage yield has been reported previously.

Grain and forage were hand harvested from sorghum hybrids RS 650 and RS 702 at approximately 35 and 15 percent grain moisture. Each treatment was replicated six times at each location. Grain was threshed from the heads, and total grain and stover weights were taken and converted to per acre yields.

Crude protein (CP) (Kjeldahl nitrogen x 6.25) and in vitro dry matter digestibility (IVDMD) were determined for stover subsamples.

Results and Discussion

Table 12.1 shows the grain and stover yields and stover quality measurements. As plots were hand harvested, yields were total material present and would be greater than could be recovered by machine harvest.

Between the early and late dates of harvest, there were no significant decreases in stover tonage; but in some cases, late harvest gave higher stover yields. These increases (in 1972) were from late growth of branches. Similarly, protein content of the stover differed little between the two harvest dates. Percent IVDMD did not change consistently during harvest. 1971 Manhattan samples seemed to be low in digestibility. Data show that following grain harvest 1.5 to 2.5 tons of stover per acre is available from either early, high moisture or normally harvested grain sorghum.

¹Department of Agronomy.

Table 12.1. Yields of Indicated Grain Sorghums (Grain and Stover) and Stover Quality at Indicated Kansas Locations

<table>
<thead>
<tr>
<th>Location and year</th>
<th>Hybrid</th>
<th>Grain yield, lb./acre</th>
<th>Yield, ton/acre</th>
<th>CP, %</th>
<th>IVDMD, %</th>
<th>Grain moisture, %</th>
<th>Stover from high moisture grain harvest</th>
<th>Yield, ton/acre</th>
<th>CP, %</th>
<th>IVDMD, %</th>
<th>Grain moisture, %</th>
<th>Stover from normal grain harvest</th>
<th>Yield, ton/acre</th>
<th>CP, %</th>
<th>IVDMD, %</th>
<th>Grain moisture, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hutchinson, 1971</td>
<td>RS650</td>
<td>3654</td>
<td>1.63</td>
<td>6.1</td>
<td>43.2</td>
<td>31.9</td>
<td>1.55</td>
<td>6.1</td>
<td>41.9</td>
<td>11.0</td>
<td></td>
<td>1.62</td>
<td>5.5</td>
<td>39.4</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS702</td>
<td>3543</td>
<td>1.74</td>
<td>5.9</td>
<td>42.6</td>
<td>32.5</td>
<td>1.62</td>
<td>6.1</td>
<td>41.9</td>
<td>11.0</td>
<td></td>
<td>1.55</td>
<td>5.5</td>
<td>39.4</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>Manhattan, 1971</td>
<td>RS650</td>
<td>6712</td>
<td>2.04</td>
<td>7.6</td>
<td>26.6</td>
<td>32.4</td>
<td>2.00</td>
<td>5.7</td>
<td>29.5</td>
<td>15.6</td>
<td></td>
<td>2.61</td>
<td>3.9</td>
<td>27.1</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS702</td>
<td>6956</td>
<td>2.66</td>
<td>4.5</td>
<td>27.7</td>
<td>31.5</td>
<td>2.61</td>
<td>5.7</td>
<td>29.5</td>
<td>15.6</td>
<td></td>
<td>2.00</td>
<td>5.7</td>
<td>27.1</td>
<td>15.2</td>
<td></td>
</tr>
<tr>
<td>Hutchinson, 1972</td>
<td>RS650</td>
<td>3086</td>
<td>1.53</td>
<td>7.6</td>
<td>40.1</td>
<td>30.0</td>
<td>1.49</td>
<td>9.0</td>
<td>29.8</td>
<td>14.2</td>
<td></td>
<td>1.85</td>
<td>8.4</td>
<td>37.3</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS702</td>
<td>3465</td>
<td>2.06</td>
<td>7.6</td>
<td>36.4</td>
<td>34.8</td>
<td>1.85</td>
<td>9.0</td>
<td>29.8</td>
<td>14.2</td>
<td></td>
<td>1.49</td>
<td>9.0</td>
<td>27.1</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td>Manhattan, 1972</td>
<td>RS650</td>
<td>5437</td>
<td>1.72</td>
<td>10.6</td>
<td>28.2</td>
<td>38.7</td>
<td>2.67</td>
<td>8.7</td>
<td>46.4</td>
<td>15.4</td>
<td></td>
<td>2.67</td>
<td>8.7</td>
<td>46.4</td>
<td>15.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RS702</td>
<td>6043</td>
<td>2.40</td>
<td>8.9</td>
<td>38.7</td>
<td>38.1</td>
<td>2.84</td>
<td>7.8</td>
<td>39.1</td>
<td>16.1</td>
<td></td>
<td>2.84</td>
<td>7.8</td>
<td>39.1</td>
<td>16.1</td>
<td></td>
</tr>
</tbody>
</table>