Prevention of respiratory disease in weaning calves

R.R. Schalles
R.J. Milleret
M. McKee

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1972 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Prevention of respiratory disease in weaning calves

Abstract
Respiratory diseases of weanling calves are a continuous problem for ranchers. Each case is estimated to represent a $10 to $20 loss through veterinary costs, decreased gains, and death losses. There is also some question as to the effectiveness of certain preventative treatments. Few reliable experiments have compared medicative and management procedures of disease preventions. We evaluated preweaning vaccinations and weaning management practices.

Keywords
Cattlemen's Day, 1972; Report of progress (Kansas State University. Agricultural Experiment Station); 557; Beef; Respiratory diseases; Weaning

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
R.R. Schalles, R.J. Milleret, M. McKee, J.R. Olson, J. Evans, and D.L. Carnahan
Prevention of Respiratory Disease
In Weaning Calves

R.R. Schalles, R.J. Milleret, Miles McKee, J.R. Olson, Jack Evans, and D.L. Carnahan

Respiratory diseases of weanling calves are a continuous problem for ranchers. Each case is estimated to represent a $10 to $20 loss through veterinary costs, decreased gains, and death losses. There is also some question as to the effectiveness of certain preventative treatments. Few reliable experiments have compared medicative and management procedures of disease prevention. We evaluated preweaning vaccinations and weaning management practices.

Methods and Materials

Both four weeks and two weeks before being weaned, 52 calves were vaccinated with pasteurized bovine rhinotracheitis-parainfluenza. A modified live bovine rhinotracheitis-parainfluenza vaccine was used on another group of 42 calves two weeks before weaning. Sixty-two calves received no vaccine. At weaning the 156 Polled Hereford calves were divided into three management groups. Thirty were weaned in a double fenced pen in the pasture where they were raised, to eliminate transportation stress. The remaining calves were trucked approximately six miles and divided into two lots with one lot receiving water and the other an electrolyte mixture. The calves were fed to consumption twice each day prairie hay and a mixture of 60% dry rolled sorghum grain and 40% dehydrated alfalfa crumbles.

Weights were taken in the pastures at weaning and at weekly intervals for three weeks. Rectal temperatures were obtained every other day during the first week postweaning and at two weeks postweaning.

Calves with temperatures of 104°F. or over were treated, as were those determined by the herdsman to be clinically sick.

1 Thanks are extended to Elanco Products Company for all the vaccine and for performing serological work.

2 Department of Animal Science and Industry.

3 Department of Surgery and Medicine.
Sick animals were routinely treated with 10cc of Pen-Strep. Chronic cases were treated with Terramycin or Sulfa compounds.

Temperature and weight data were analyzed, using least squares analysis with weaning weight and weaning age as covariants to hold those two variables constant. Age of the dam and sex of the calf were included in the analysis. Chi-square analysis was used to analyze for differences in number of calves treated in the various groups.

Results

Table 43 gives performance results as interactions between weaning management and vaccination treatments were not significant (P>.05), only main factors are presented. Weaning stress did not increase temperature in general. Calves had either a normal temperature or a highly elevated temperature, above 104°F, so differences in average temperatures between weaning management or vaccination treatments were not significant. Significantly more (P<.025) calves that received the modified live vaccine were treated than those that received the pasteurized vaccine. Number of sick calves in the nonvaccinated group was intermediate. Weaning management accounted for no significant differences in number of sick calves, but the group with the largest percentage sick was the one weaned in the pasture. Calves weaned in the pasture required fewer treatments per sick calf than those in other management groups. Calves that received the pasteurized vaccine also required fewer treatments per sick calf than the nonvaccinated group or the group vaccinated with the modified live vaccine.

The average weaning weight was 395±5.8 lbs. All groups lost weight during the first week with no significant differences. At the end of the second week, all groups except those weaned in the pasture had again reached their approximate weaning weights. The group weaned in the pasture lost weight throughout the three week trial. At the end of three weeks differences in weight among the groups vaccinated were not significant but both vaccinated groups weighed slightly more than the nonvaccinated group. Groups that received either electrolyte or water continued to weigh significantly more than the group weaned in the pasture.

Discussion

Each of the past two years serious outbreaks of respiratory diseases have followed weaning in this herd. This year inclement weather persisted with precipitation 10 of the first 12 days. Maximum daily temperature ranged between 43° and 80°F.; minimum, between 19° to 61°F. No shelter was provided during the weaning period. Past history of the herd and severe weather should have stressed the calves enough to challenge their health. Under the conditions described the percentage of sick calves was lower for those vaccinated with pasteurized bovine rhinotracheitis-parainfluenza-3 vaccine than for those not vaccinated or those vaccinated with a modified live vaccine.
Calves weaned in the pasture separated from their mothers by a double fence lost weight while those trucked 6 miles gained weight after the first week. Fewer calves that received electrolyte became sick and they required fewer treatments per sick calf than was true for calves that received water.
Table 43. Average calf performance (with standard errors) of calves receiving indicated weaning treatment.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Vaccination treatment</th>
<th>Weaning management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
<td>Killed</td>
</tr>
<tr>
<td>No. calves</td>
<td>62</td>
<td>52</td>
</tr>
<tr>
<td>Temperature, F.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd day</td>
<td>101.2±0.1</td>
<td>101.3±0.1</td>
</tr>
<tr>
<td>4th day</td>
<td>102.1±0.2</td>
<td>102.0±0.2</td>
</tr>
<tr>
<td>6th day</td>
<td>101.4±0.2</td>
<td>101.5±0.2</td>
</tr>
<tr>
<td>14th day</td>
<td>101.6±0.2</td>
<td>101.6±0.2</td>
</tr>
<tr>
<td>Weight, lbs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th day</td>
<td>377.8±4.7</td>
<td>385.9±4.1</td>
</tr>
<tr>
<td>14th day</td>
<td>383.0±4.1</td>
<td>394.2±3.5</td>
</tr>
<tr>
<td>21th day</td>
<td>386.7±4.5</td>
<td>396.1±3.8</td>
</tr>
<tr>
<td>Treatments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calves treated</td>
<td>32%</td>
<td>12%</td>
</tr>
<tr>
<td>Treatment/calf treated</td>
<td>2.50</td>
<td>1.67</td>
</tr>
</tbody>
</table>