The nutritive value of four varieties of sorghum grain

R.L. McCollough
C.L. Drake
K.F. Harrison

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1970 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
The nutritive value of four varieties of sorghum grain

Abstract
In 1969, Kansas harvested 182,896,00 bushels from 3,266,00 acres of grains sorghum for a 56-bushel-per-acre average. Much of it is fed to beef cattle; therefore, it would be an economic advantage for both grain producers and cattle feeders to have a sorghum grain of superior feeding quality.

Keywords
Cattlemen's Day, 1970; Report of progress (Kansas State University. Agricultural Experiment Station); 536; Beef; Sorghum grain; Feed quality; White sorghum grain

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
The Nutritive Value of Four Varieties of Sorghum Grain

(Project 567)

R.L. McCollough, C.L. Drake and K.F. Harrison

Introduction

In 1969, Kansas harvested 182,896,000 bushels from 3,266,000 acres of grain sorghum for a 56-bushel-per-acre average. Much of it is fed to beef cattle; therefore, it would be an economic advantage for both grain producers and cattle feeders to have a sorghum grain of superior feeding quality.

Work in Texas\(^1\) has suggested that a new, white sorghum grain may be superior to red sorghum grain in nutritive value. We compared four varieties of sorghum grain for digestibility. Feedlot performance of cattle fed the four varieties is underway.

Materials and Methods

Three popular red varieties grown in Kansas were compared with the new white grain. The varieties used were: Funk's G-766\(^2\), white; ACCO R-109\(^3\), red over yellow endosperm; DeKalb E-57\(^4\), red; Northrup King 222A\(^5\), red.

Sorghum grain used to conduct a digestion trial in 1968 was purchased from local farmers. Four Hereford steers, weighing approximately 820 lbs. each, were used in a four-by-four latin square design to obtain digestion coefficients reported in table 25. They were fed an all-concentrate ration shown in table 26.

In 1969, a second digestion trial was conducted and an effort was made to reduce variety variation. June 9, 1969, approximately 7 acres each of four varieties were planted in the same field, at 7 pounds per acre in 36-inch rows. No consideration was given to individual company specifications for seeding rate. Weeds were controlled by rotary hoeing, field cultivating and spraying with 2, 4-D July 15. The field was hilled for irrigation and irrigated August 15. One hundred fifty lbs. N/A were applied preplant as anhydrous ammonia with 9 lbs. N, 22 lbs. P\(_2\)O\(_5\), 16 lbs. K\(_2\)O, and 5 lbs. Zn supplied per acre as a starter fertilizer.

2 Supplied by: Punk Bros., Lubbock, Texas
3 Supplied by: Anderson, Clayton & Co., Belmond, Iowa
4 Supplied by: DeKalb Seed Co., Lubbock, Texas
5 Supplied by: Northrup, King & Co., Lubbock, Texas
All varieties were harvested November 16-19, 1969. Yield data are in table 27. The field loss was calculated by difference between actual grain harvested by combine and yield calculated by hand harvesting heads from 6 plots, per variety.

Results and Discussion

There were no significant differences in yield among the four varieties of sorghum grain. We did notice the Funk's G-766W was 3 to 4 inches taller, and lodged more at harvest time than the red varieties. Proximate analysis of the four sorghum varieties are presented in table 28.

Digestion coefficients did not differ significantly. When the cattle first started on feed, a difference in palatability of varieties was noticed in both the feedlot and digestion trials. Less ACCO R-109 was consumed the first few days but after 7 days consumption was the same for all varieties.
Table 25. Digestibility Coefficients of Sorghum Grain

<table>
<thead>
<tr>
<th>Rations</th>
<th>Funk's 766W</th>
<th>ACCO R-109</th>
<th>Dekalb E-57</th>
<th>Northrup King 222A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily DM intake lbs.</td>
<td>10.91</td>
<td>9.94</td>
<td>10.03</td>
<td>10.49</td>
</tr>
<tr>
<td>Digestibility, DM basis%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>62.84</td>
<td>62.95</td>
<td>66.89</td>
<td>60.20</td>
</tr>
<tr>
<td>Crude Fiber</td>
<td>51.11</td>
<td>49.80</td>
<td>48.16</td>
<td>46.89</td>
</tr>
<tr>
<td>Ether Extract</td>
<td>58.18</td>
<td>52.80</td>
<td>60.26</td>
<td>61.31</td>
</tr>
<tr>
<td>Nitrogen Free Extract</td>
<td>78.90</td>
<td>80.52</td>
<td>79.89</td>
<td>79.21</td>
</tr>
<tr>
<td>TDN</td>
<td>75.66</td>
<td>76.51</td>
<td>76.86</td>
<td>75.73</td>
</tr>
<tr>
<td>Dry Matter</td>
<td>74.85</td>
<td>76.05</td>
<td>76.44</td>
<td>75.00</td>
</tr>
<tr>
<td>Gross Energy</td>
<td>73.25</td>
<td>73.75</td>
<td>69.75</td>
<td>71.75</td>
</tr>
<tr>
<td>Nitrogen Retention</td>
<td>.15</td>
<td>.05</td>
<td>.21</td>
<td>.12</td>
</tr>
<tr>
<td>Gross Energy Kcal/kg</td>
<td>4,541.00</td>
<td>4,520.00</td>
<td>4,511.00</td>
<td>4,541.00</td>
</tr>
<tr>
<td>Digestible Energy Kcal/gm</td>
<td>3,326.00</td>
<td>3,333.00</td>
<td>3,147.00</td>
<td>3,258.00</td>
</tr>
</tbody>
</table>

Note: No significant difference among any of digestion coefficients
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground limestone (38%)</td>
<td>8.42</td>
</tr>
<tr>
<td>Vitamin A premix (10,000 IU per gm)</td>
<td>.33 (150 gm)</td>
</tr>
<tr>
<td>Chlorotetraacyctyne premix (10 gm/lb)</td>
<td>.71 (322.8 gm)</td>
</tr>
<tr>
<td>Trace mineral premix¹</td>
<td>1.00</td>
</tr>
<tr>
<td>Salt</td>
<td>20.00</td>
</tr>
<tr>
<td>Sorghum grain²</td>
<td>19.54</td>
</tr>
<tr>
<td>Total premix</td>
<td>50.00</td>
</tr>
<tr>
<td>Rolled sorghum grain</td>
<td>1,950.00</td>
</tr>
<tr>
<td>Total ration</td>
<td>2,000.00</td>
</tr>
</tbody>
</table>

1 Percentages of indicated elements in trace mineral premix: Maganese 4.4%; iron 6.6%; copper 1.32%; cobalt .23%; iodine .30%; zinc 5%; magnesium 20%; sulfur 2.70%.

2 Grain varied with urea added to make rations isonitrogenous to 12% protein (dry matter basis) Urea added, as percent of ration: Funk's G-766W, .57%; ACCO R-109, .62%; Dekalb, E-57, .70%; Northrup King, 222A, .23%.
Table 27. Actual and Expected Yields of Sorghum Grains (Summer 1969)

<table>
<thead>
<tr>
<th>Sorghum Grain Varieties</th>
<th>Funk's G-766W</th>
<th>ACCO R-109</th>
<th>DeKalb E-57</th>
<th>Northrup King 222A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acre/field</td>
<td>6.2</td>
<td>7.8</td>
<td>9.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Lbs./field</td>
<td>33,030.0</td>
<td>51,520.0</td>
<td>57,490.0</td>
<td>38,630.0</td>
</tr>
<tr>
<td>Moisture %</td>
<td>15.0</td>
<td>15.2</td>
<td>15.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Test wt. (lbs./bu)</td>
<td>59.5</td>
<td>59.5</td>
<td>60.5</td>
<td>59.5</td>
</tr>
<tr>
<td>Bu/field (56/lbs./bu)</td>
<td>589.8</td>
<td>920.0</td>
<td>1,026.6</td>
<td>689.8</td>
</tr>
<tr>
<td>Bu/acre (as is)</td>
<td>95.1 (80.9)</td>
<td>117.0 (99.2)</td>
<td>109.7 (93.2)</td>
<td>109.5 (92.5)</td>
</tr>
<tr>
<td>Expected yield (as is)</td>
<td>114.7 (99.9)</td>
<td>132.7 (114.8)</td>
<td>118.6 (102.9)</td>
<td>111.1 (96.2)</td>
</tr>
<tr>
<td>Field loss bu/acre</td>
<td>19.6 (19.1)</td>
<td>15.6 (15.6)</td>
<td>8.9 (9.6)</td>
<td>1.5 (3.6)</td>
</tr>
<tr>
<td>Field loss %</td>
<td>17.1 (19.1)</td>
<td>11.8 (13.6)</td>
<td>7.6 (9.4)</td>
<td>1.4 (3.8)</td>
</tr>
<tr>
<td>Av. leaves/plant</td>
<td>8 to 9</td>
<td>8 to 9</td>
<td>9 to 11</td>
<td>7 to 8</td>
</tr>
<tr>
<td>Mature plant height in.</td>
<td>54-58</td>
<td>52-53</td>
<td>52-55</td>
<td>49-52</td>
</tr>
</tbody>
</table>

1 Parenthesis indicates 100% DM basis

2 Expected yield = grain harvested by hand from 20 ft. of a 36 inch row. Calculation of expected yield:

43,560 sq. ft./acre, 60 sq. ft. or .00138 of an acre

\[
1 \div .00138 = 726.005
\]

726.005 \div 56 lbs./bu = 12.964

12,964 \times \text{lbs. of grain}/20 \text{ ft.} = \text{expected bu.}/\text{acre}
Table 28. Proximate Analysis of Varieties of Sorghum Grain

<table>
<thead>
<tr>
<th></th>
<th>Varieties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Funk's G-766W</td>
</tr>
<tr>
<td>Dry Matter %</td>
<td>84.20</td>
</tr>
<tr>
<td>Moisture %</td>
<td>15.98</td>
</tr>
<tr>
<td>Protein (6.25) %</td>
<td>8.95</td>
</tr>
<tr>
<td></td>
<td>(10.58)(^1)</td>
</tr>
<tr>
<td>Ether extract %</td>
<td>2.74</td>
</tr>
<tr>
<td></td>
<td>(3.26)</td>
</tr>
<tr>
<td>ASH %</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>(1.54)</td>
</tr>
<tr>
<td>Crude fiber %</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>(1.85)</td>
</tr>
<tr>
<td>Nitrogen free extract %</td>
<td>69.49</td>
</tr>
<tr>
<td></td>
<td>(82.77)</td>
</tr>
<tr>
<td>Starch %</td>
<td>64.97</td>
</tr>
<tr>
<td></td>
<td>(77.33)</td>
</tr>
</tbody>
</table>

1 Parenthesis 100% dry matter basis