Evaporative cooling systems for swine

D R. Ames

David A. Nichols

Robert H. Hines

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1978 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Evaporative cooling systems for swine

Abstract
During heat stress swine must rely on evaporation as a mechanism for heat loss. Providing water via sprinklers, showers, and foggers is a practical method of reducing heat stress. It is imperative in any evaporative system that animals are permitted to dry, because the evaporation of water is fundamental to evaporative cooling. Ideally, hogs should be wetted and then given time to dry, followed by successive wetting and drying. Studies are under way to investigate various systems of wetting hogs to take maximum advantage of evaporative cooling.; Swine Day, Manhattan, KS, November 9, 1978

Keywords
Swine day, 1978; Kansas Agricultural Experiment Station contribution; no. 79-105-S; Report of progress (Kansas State University. Agricultural Experiment Station and Cooperative Extension Service); 342; Swine; Cooling systems; Evaporation; Heat stress

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Evaporative Cooling Systems for Swine
D. R. Ames, D. A. Nichols, and R. H. Hines

Progress Report

During heat stress swine must rely on evaporation as a mechanism for heat loss. Providing water via sprinklers, showers, and foggers is a practical method of reducing heat stress. It is imperative in any evaporative system that animals are permitted to dry, because the evaporation of water is fundamental to evaporative cooling. Ideally, hogs should be wetted and then given time to dry, followed by successive wetting and drying. Studies are under way to investigate various systems of wetting hogs to take maximum advantage of evaporative cooling.

We compared constant fogging with intermittent wetting by sprinklers and showers during a 42-day test involving 48 growing pigs weighing approximately 150 lb. Foggers, sprinklers, and showers had flow rates of 1.7, 2.5, and 7.2 gal per hour, respectively. All systems operated when dry bulb temperature exceeded 80 F. Pigs with no wetting served as controls. Mean daily maximum temperature was 91 F and mean daily minimum temperature was 68 F for the test period. Relative humidity averaged 40% measured at 4 p.m. daily. Results are shown in the following table.

<table>
<thead>
<tr>
<th></th>
<th>Control Fogger</th>
<th>Shower</th>
<th>Sprinkler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average daily gain (lb)</td>
<td>1.44<sup>a</sup></td>
<td>1.56<sup>ab</sup></td>
<td>1.49<sup>a</sup></td>
</tr>
<tr>
<td>Daily intake (lb)</td>
<td>5.88</td>
<td>5.85</td>
<td>6.65</td>
</tr>
<tr>
<td>Feed/gain</td>
<td>4.05</td>
<td>3.94</td>
<td>4.48</td>
</tr>
</tbody>
</table>

Lines with different subscripts are significantly different (P < .05).

This initial trial indicates that foggers and sprinklers increase average daily gain compared to that of controls and that sprinklers (1 min sprinkle, 29 min dry) tend to be superior (P < .08) to constant foggers. Further studies will be conducted during summer 1979 to evaluate evaporative cooling systems for swine.