7-2017

Estimating Transpiration from Turfgrass Using Stomatal Conductance Values Derived from Infrared Thermometry

Kenton W. Peterson
D. Bremer
Kansas State University, bremer@ksu.edu
J. M. Blonquist Jr.

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Horticulture Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 7-2017 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Estimating Transpiration from Turfgrass Using Stomatal Conductance Values Derived from Infrared Thermometry

Abstract
Infrared thermometry provides accurate measurements of plant canopy temperature, which, along with basic weather variables, allows estimation of canopy stomatal conductance to water vapor flux (g_c) and transpiration. Using this method we compared modeled estimates of transpiration (COND_T) with evapotranspiration (ET) measurements from nearby microlysimeters (LYS_E_T) in tall fescue (Schedonorus arundinaceus Schreb.) turfgrass. Results indicated transpiration may be reliably estimated via calculation of g_c in turfgrass.

Keywords
Evapotranspiration, evapotranspiration models, water

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Estimating Transpiration from Turfgrass Using Stomatal Conductance Values Derived from Infrared Thermometry

Kenton W. Peterson, Dale J. Bremer, and J. Mark Blonquist, Jr.

Summary. Infrared thermometry provides accurate measurements of plant canopy temperature, which, along with basic weather variables, allows estimation of canopy stomatal conductance to water vapor flux (g_c) and transpiration. Using this method we compared modeled estimates of transpiration (COND_{T}) with evapotranspiration (ET) measurements from nearby microlysimeters (LYS_{ET}) in tall fescue (Schedonorus arundinaceus Schreb.) turfgrass. Results indicated transpiration may be reliably estimated via calculation of g_c in turfgrass.

Rationale. From a landscape and water use perspective, ET is typically of more interest than transpiration alone. However, partitioning between transpiration and soil water evaporation may improve our understanding of the dynamics of water loss from these two components of ET. For example, transpiration and soil water evaporation may respond differently to changing environmental conditions (e.g., soil moisture and weather variables) or canopy characteristics (e.g., density and green leaf area). Additional uses may include evaluation and quantification of turfgrass stress (due to stomatal closure) among treatments, and the study of drought tolerance or water use efficiency of turfgrasses.

Objectives. 1) compare single- versus two-source energy balance approaches for sensible and latent heat flux calculations; 2) use g_c calculated with the method of Blonquist et al. (2009) to estimate transpiration from a dense, well-watered sward of tall fescue (Schedonorus arundinaceus Schreb.) turfgrass; and 3) compare calculated canopy transpiration (COND_{T}) with lysimeter evapotranspiration (LYS_{ET}).
Study Description. The study was conducted from June to October 2012, at the Kansas State University Rocky Ford Turfgrass Research Center near Manhattan, KS. Three microlysimeters containing ambient cores of tall fescue turfgrass were used to measure LYS_{ET}, similar to the method of Bremer (2003). Four infrared radiometers, used to measure canopy temperature, were positioned on a weather station that recorded all data necessary for calculating g_c (Figure 1).

Results. Transpiration calculated from modeled g_c (COND_T) averaged 0.07 in./d (29.6%) less than mean LYS_{ET}, suggesting 29.6% of LYS_{ET} was from soil water evaporation (Table 1). Nighttime LYS_{ET}, which may contribute 5-15% to total daily ET, may have inadvertently contributed to the soil water evaporation component using this method, since our conductance model assumed zero nighttime transpiration. Therefore, assuming 5-15% transpiration during nighttime, mean COND_T would then be 0.17 to 0.19 inches per day, suggesting only 19-26% of LYS_{ET} was from soil water evaporation. Minor errors in both the model estimates and lysimeter measurements also likely affected overall accuracy in the differences between COND_T and LYS_{ET}. Regression analysis of COND_T versus LYS_{ET} resulted in a slope of 0.78 and y-axis intercept of -0.016 (Figure 2). Differences were negligible between the single- and two-source energy balance approaches for sensible and latent heat flux calculations.

References

Table 1. Comparison of transpiration calculated from canopy stomatal conductance (COND$_T$) and evapotranspiration measured with a lysimeter (LYS$_{ET}$)

<table>
<thead>
<tr>
<th>Measurement technique</th>
<th>n</th>
<th>Mean daily water loss</th>
<th>RMSE†</th>
<th>MBE†</th>
<th>%E†</th>
</tr>
</thead>
<tbody>
<tr>
<td>LYS$_{ET}$</td>
<td>42</td>
<td>0.230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COND$_T$</td>
<td>42</td>
<td>0.163</td>
<td>0.074</td>
<td>-0.067</td>
<td>-29.6</td>
</tr>
</tbody>
</table>

†RMSE is the root mean square error calculated as: $\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\text{ET}_i - \text{LYS}_{ET_i})^2}$.

†MBE is the mean bias error calculated as: $\text{MBE} = \frac{1}{n} \sum_{i=1}^{n} (\text{ET}_i - \text{LYS}_{ET_i})$.

†%E is the mean percent error calculated as: $\%E = \sum \left(\frac{\text{ET}_i - \text{LYS}_{ET_i}}{\text{LYS}_{ET_i}} \right) \times 100$.

Figure 1. Three infrared radiometers (SI-111, Apogee Instruments, Logan, UT) were installed at 4.92 ft. above the turfgrass and aimed in the compass directions east, west, and south with a view angle of 50° from nadir, yielding a target area of 70 ft2. A fourth radiometer, not visible in photo, was pointed straight down (0° from nadir).
Figure 2. Regression analysis of evapotranspiration measured with a lysimeter (LYSET) and transpiration calculated from canopy stomatal conductance.