
Merle D. Witt
William T. Schapaugh Jr.
SOYBEAN CHOICES FOR
IRON-DEFICIENT SOILS

Merle Witt and William Schapaugh*

Yellow etiolated soybeans with reduced yields caused by a shortage of available iron are increasing problems in Kansas. In the central and western portions of the state, the iron-deficient areas that often are associated with highly calcareous soils are becoming more apparent. In severe cases of iron deficiency, other crop choices should be considered rather than soybeans. However, where soybeans are grown, partial solutions to this crop problem are possible.

Yield losses from iron deficiency often can be minimized in soybeans by:

1. Growing varieties with genetic tolerance to iron chlorosis.
2. Making field applications of livestock manure.

Among those three alternatives, using varieties tolerant of iron-deficient soils is generally the most desirable. Livestock manure applications to a field are often effective, but drawbacks include lack of accessibility to manure, high transportation costs, and frequent presence of weed seed. Foliar iron applications often are not very effective with soybeans, and the materials also tend to be expensive, difficult to maintain in suspension, and abrasive to application equipment.
Procedure
Sixty soybean varieties were studied in 1994 in field plots at the Southwest Research–Extension Center near Garden City, KS for their response to soils with limited available iron. Iron uptake values were recorded as chlorophyll (greenness) measurements using a Minolta SPAD-502 Chlorophyll Meter. Ratings were averaged from three plots for each entry. This soil site contained approximately 5 ppm iron (DPTA test).

Results
The reactions of some public and private soybean varieties are given in Table 1. These data cover released varieties available to the public or experimentals nearing release and of interest to producers.

The first 12 varieties listed rank significantly better than other entries in tolerance to limited available iron. The very poorest tolerance was shown by the variety Ohlde 4040.

Conclusions
Although no soybean varieties are available with complete tolerance to iron chlorosis, some show moderate levels of tolerance. Moderate tolerance allows improved soybean production in all but the most severe problem areas. Thus, variety selection is often the most practical solution to chlorosis caused by iron deficiency.

Table 1. Evaluation of soybean varieties for iron chlorosis tolerance.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Entry</th>
<th>Maturity Group</th>
<th>Iron Uptake Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohlde</td>
<td>3214</td>
<td>III</td>
<td>33.0</td>
</tr>
<tr>
<td>Ohlde</td>
<td>3431A</td>
<td>III</td>
<td>30.7</td>
</tr>
<tr>
<td>DeKalb</td>
<td>CX458</td>
<td>IV</td>
<td>30.3</td>
</tr>
<tr>
<td>Midland</td>
<td>8413</td>
<td>IV</td>
<td>30.3</td>
</tr>
<tr>
<td></td>
<td>Sparks</td>
<td>IV</td>
<td>29.3</td>
</tr>
<tr>
<td>Ohlde</td>
<td>3820</td>
<td>III</td>
<td>29.9</td>
</tr>
<tr>
<td></td>
<td>K1231</td>
<td>IV</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>K1261</td>
<td>IV</td>
<td>28.7</td>
</tr>
<tr>
<td></td>
<td>KS4390</td>
<td>IV</td>
<td>28.0</td>
</tr>
<tr>
<td>Deltapine</td>
<td>DP 3456</td>
<td>IV</td>
<td>28.0</td>
</tr>
<tr>
<td>Deltapine</td>
<td>DPX 3432</td>
<td>IV</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>K1213</td>
<td>IV</td>
<td>27.7</td>
</tr>
<tr>
<td>Pioneer</td>
<td>9393</td>
<td>III</td>
<td>27.3</td>
</tr>
<tr>
<td>Drussel</td>
<td>DSS Exp 35203</td>
<td>III</td>
<td>27.0</td>
</tr>
<tr>
<td>Midland</td>
<td>8355</td>
<td>III</td>
<td>27.0</td>
</tr>
<tr>
<td>Midland</td>
<td>8375</td>
<td>III</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>KS4694</td>
<td>IV</td>
<td>27.0</td>
</tr>
</tbody>
</table>

Brand Entry Maturity Iron Uptake Group Reading
Agripro AP 4510 IV 27.0
Drussel DSS Exp 4358 III 26.7
DeKalb K1235 IV 26.7
Ohlde X3660 III 26.3
Pioneer 9341 III 26.0
Hyperformer HY 351 III 25.7
Midland 8393 III 25.3
Asgrow A3510 III 25.0
Drussel DSS Exp 6353 III 25.0
Golden Harvest H-1388 III 25.0
Ohlde 3272 III 25.0
Ohlde 3750A III 24.7
Ohlde X3555 III 24.7
Golden Harvest HC89-2170 IV 24.7
Midland Exp 372 III 24.3
Ohlde X816 III 24.0
DeKalb CX411 IV 24.0
Ohlde Renik III 23.3
Golden Harvest Corsica IV 23.3
Ohlde Flyer IV 22.7
Golden Harvest K1262 IV 22.3
Ohlde K1262 IV 22.3
Golden Harvest Kenwood III 21.7
Golden Harvest KY88-5037 IV 21.7
Hyperformer HY 446 IV 21.7
Agripro AP3800 III 21.0
Pioneer 9381 III 20.3
Pioneer Edison III 20.0
Ohlde 3870 III 20.0
Hyperformer HSC 398 III 19.3
Golden Harvest A4138 IV 19.0
Asgrow C1832 III 18.7
Hyperformer Sherman III 18.7
Pioneer 9362 III 17.3
Golden Harvest HY 498 IV 15.7
Deltapine DP 3478 IV 14.3
Stine 3490 IV 14.3
Northrup King 542-60 IV 14.0
Golden Harvest 4040 IV 12.0

Test Average 24.0
L.S.D. (5%) 5.7

\(/ \) Highest value is best.
Note: Trade names are used to identify products. No endorsement is intended, nor is any criticism implied of similar products not named.

*Research Agronomist, Southwest Research-Extension Center, 4500 E. Mary, Bldg 924, Garden City, KS 67846 and Research Soybean Geneticist, Department of Agronomy, Kansas State University, Manhattan, KS 66506-5501.

Contribution No. 95-450-S from the Kansas Agricultural Experiment Station.