Two-year Test Results Suggest Caution with Dinoseb as a Yield Stimulant for Corn or Grain Sorghum

Samuel Temitayo Jaiyesimi

Merle D. Witt

Oliver G. Russ

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation
Jaiyesimi, Samuel Temitayo; Witt, Merle D.; Russ, Oliver G.; Norwood, Charles A.; and Vanderlip, R. L. (1977) "Two-year Test Results Suggest Caution with Dinoseb as a Yield Stimulant for Corn or Grain Sorghum," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 12. https://doi.org/10.4148/2378-5977.7371

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1977 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Two-year Test Results Suggest Caution with Dinoseb as a Yield Stimulant for Corn or Grain Sorghum

Keywords
Keeping up with research; 33 (April 1977); Kansas Agricultural Experiment Station contribution; no. 1645-S; Kansas Agricultural Experiment Station contribution; no. 129-S; Dinoseb; Yield stimulant; Corn; Grain sorghum

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
Samuel Temitayo Jaiyesimi, Merle D. Witt, Oliver G. Russ, Charles A. Norwood, and R. L. Vanderlip

This research report is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol0/iss12/134
Two-year Test Results Suggest Caution with Dinoseb as a Yield Stimulant for Corn or Grain Sorghum


Studies by Dr. A. J. Ohlrogge and associates (1) initiated in 1968 generated interest in using low rates of dinoseb (2-sec-butyl-4,6-dinitrophenol, also known as dinitro, DNBP, Spark®, and Premerge®, as a biostimulant on corn. Dinoseb usually is used as a nonspecific contact herbicide. Spraying dinoseb on corn two weeks before tassels emerged sometimes gave significant yield increases.

Many tests have been conducted in the midwestern states since then to determine its effectiveness on corn (2). Results have not been consistent; some have given measurable yield increases and some, yield decreases.

AGRICULTURAL EXPERIMENT STATION
Kansas State University, Manhattan
Floyd W. Smith, Director
The Studies

We treated corn and grain sorghum with dinoseb at the Garden City Branch Station in 1975 and 1976 and at the Ag Experiment Station at Manhattan in 1976. Rates, hybrids used, and yield data are summarized in Tables 1 and 2.

Table 1.—Corn and grain sorghum yields (bu/A) as affected by dinoseb applications at Garden City, Kansas in 1975 and 1976.

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>Grams per acre</th>
<th>Corn 1975 dryland</th>
<th>Sorghum 1975 dryland</th>
<th>Corn 1976 irrigated</th>
<th>Sorghum 1976 irrigated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td>Dinoseb</td>
<td>Control</td>
<td>Dinoseb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.3</td>
<td>30.1</td>
<td>52.6</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>34.2</td>
<td>52.0</td>
<td>138.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td>30.3</td>
<td>47.6</td>
<td>131.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0</td>
<td>29.7</td>
<td>54.8</td>
<td></td>
</tr>
</tbody>
</table>

* None of the treatments significantly increased or decreased yields.

Table 2.—Dryland corn and grain sorghum yields (bu/A) as affected by dinoseb applications at Manhattan, Kansas in 1976.

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>Grams per acre</th>
<th>Corn 1975</th>
<th>Sorghum 1975</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td>Dinoseb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.7</td>
<td>114.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5</td>
<td>94.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>90.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td></td>
</tr>
</tbody>
</table>

* None of the treatments significantly increased or decreased yields.

Dinoseb was sprayed on corn when unemerged tassels were between 2.5 and 4 inches long, and on sorghum at four growth stages—growing point differentiation, flag leaf, boot, and half-bloom—as identified by Vanderlip (3).

Results and Discussion

Yields were not significantly increased or decreased in any of the experiments. Average differences in sorghum yields of treated plots ranged from 5.6 bushels less an acre on irrigated sorghum at Garden City to 4.3 bushels more on dryland sorghum at Manhattan. Average differences in corn yields of the treated plots compared to the controls were from 3.1 bushels less for dryland corn at Manhattan to 0.8 bushel more for dryland corn at Garden City.

Dinoseb did not significantly increase yields of either corn or grain sorghum in these experiments.

References