Irrigated Corn Response to Long-Term Nitrogen and Phosphorus Fertilization

A. Schlegel
Kansas State University, schlegel@ksu.edu

H. D. Bond
Kansas State University, dbond@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the *Agronomy and Crop Sciences Commons*

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2017 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Irrigated Corn Response to Long-Term Nitrogen and Phosphorus Fertilization

Abstract
Long-term research shows that phosphorus (P) and nitrogen (N) fertilizer must be applied to optimize the production of irrigated corn in western Kansas. In 2016, N applied alone increased yields by 85 bu/a, whereas P applied alone increased yields by only 12 bu/a. Nitrogen and P applied together increased yields up to 164 bu/a. This is 20 bu/a greater than the 10-year average, where N and P fertilization increased corn yields up to 144 bu/a. Application of 120 lb/a N (with the highest P rate) produced about 94% of maximum yield in 2016, which is similar to the 10-year average. Application of 80 instead of 40 lb P₂O₅/a increased average yields 6 bu/a. Average grain N content reached a maximum of 0.6 lb/bu, while grain P content reached a maximum of 0.15 lb/ bu (0.34 lb P₂O₅/bu). At the highest N and P rate, apparent fertilizer nitrogen recovery (grain) (AFNR₉) was 44% and apparent fertilizer phosphorus recovery (grain) (AFPR₉) was 62%.

Keywords
nitrogen fertilization, phosphorus fertilization, irrigated corn, long-term fertility, nutrient removal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

This soil fertility is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol3/iss5/19
Irrigated Corn Response to Long-Term Nitrogen and Phosphorus Fertilization

A. Schlegel and D. Bond

Summary
Long-term research shows that phosphorus (P) and nitrogen (N) fertilizer must be applied to optimize the production of irrigated corn in western Kansas. In 2016, N applied alone increased yields by 85 bu/a, whereas P applied alone increased yields by only 12 bu/a. Nitrogen and P applied together increased yields up to 164 bu/a. This is 20 bu/a greater than the 10-year average, where N and P fertilization increased corn yields up to 144 bu/a. Application of 120 lb/a N (with the highest P rate) produced about 94% of maximum yield in 2016, which is similar to the 10-year average. Application of 80 instead of 40 lb P$_2$O$_5$/a increased average yields 6 bu/a. Average grain N content reached a maximum of 0.6 lb/bu, while grain P content reached a maximum of 0.15 lb/bu (0.34 lb P$_2$O$_5$/bu). At the highest N and P rate, apparent fertilizer nitrogen recovery (grain) (AFNR$_g$) was 44% and apparent fertilizer phosphorus recovery (grain) (AFPR$_g$) was 62%.

Introduction
This study was initiated in 1961 to determine responses of continuous corn and grain sorghum grown under flood irrigation to N, P, and potassium (K) fertilization. The study is conducted on a Ulysses silt loam soil with an inherently high K content. No yield benefit to corn from K fertilization was observed in 30 years, and soil K levels remained high, so the K treatment was discontinued in 1992 and replaced with a higher P rate.

Experimental Procedures
This field study is conducted at the Tribune unit of the Kansas State University Southwest Research-Extension Center. Fertilizer treatments initiated in 1961 are N rates of 0, 40, 80, 120, 160, and 200 lb/a without P and K; with 40 lb/a P$_2$O$_5$ and zero K; and with 40 lb/a P$_2$O$_5$ and 40 lb/a K$_2$O. The treatments were changed in 1992; the K variable was replaced by a higher rate of P (80 lb/a P$_2$O$_5$). All fertilizers were broadcast by hand in the spring and incorporated before planting. The soil is a Ulysses silt loam. The corn hybrids [Pioneer 33B54 (2007), Pioneer 34B99 (2008), DeKalb 61-69 (2009), Pioneer 1173H (2010), Pioneer 1151XR (2011), Pioneer 0832 (2012-2013), Pioneer 1186AM (2014), Pioneer 35F48 AM1 (2015), and Pioneer 1197 (2016)] were planted at about 32,000 seeds/a in late April or early May. Hail damaged the 2008 and 2010 crops. The corn was irrigated to minimize water stress. Sprinkler irrigation has been used since 2001. The center two rows of each plot are machine harvested after physiological maturity. Grain yields are adjusted to 15.5% moisture. Grain samples were
collected at harvest, dried, ground and analyzed for N and P concentrations. Grain N and P content (lb/bu) and removal (lb/a) were calculated. Apparent fertilizer N recovery in the grain (AFNR_g) was calculated as N uptake in treatments receiving N fertilizer minus N uptake in the unfertilized control divided by N rate. The same approach was used to calculate apparent fertilizer P recovery in the grain (AFPR_g).

Results and Discussion

Corn yields in 2016 were 10% greater than the 10-year average (Table 1). Nitrogen alone increased yields 85 bu/a, whereas P alone increased yields only 12 bu/a. However, N and P applied together increased corn yields up to 164 bu/a. Maximum yield was obtained with 160 lb/a N with 80 lb/a P₂O₅. Corn yields in 2016 (averaged across all N rates) were 6 bu/a greater with 80 than with 40 lb/a P₂O₅.

The 10-year average grain N concentration (%) increased with N rates but tended to decrease when P was also applied, presumably because of higher grain yields diluting N content (Table 2). Grain N content reached a maximum of 0.6 lb/bu. Maximum N removal (lb/a) was greatest at the highest yield levels, which were attained with 200 lb N and 80 lb P₂O₅/a. At the highest N and P rate, AFNR_g was 44% and AFPR_g was 62%. Similar to N, average P concentration increased with increased P rates but decreased with higher N rates. Grain P content (lb/bu) of about 0.15 lb P/bu (0.34 lb P₂O₅/bu) was greater at the highest P rate with low N rates. Grain P removal averaged 30 lb P/a at the highest yields.
Table 1. Nitrogen (N) and phosphorus (P) fertilization on irrigated corn yields, Tribune, KS, 2007-2016

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>P\textsubscript{2}O\textsubscript{5}</td>
<td>lb/a</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>49</td>
<td>36</td>
<td>85</td>
<td>20</td>
<td>92</td>
<td>86</td>
<td>70</td>
<td>86</td>
<td>92</td>
<td>74</td>
</tr>
<tr>
<td>0</td>
<td>40</td>
<td>50</td>
<td>57</td>
<td>110</td>
<td>21</td>
<td>111</td>
<td>85</td>
<td>80</td>
<td>95</td>
<td>103</td>
<td>78</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
<td>51</td>
<td>52</td>
<td>106</td>
<td>28</td>
<td>105</td>
<td>94</td>
<td>91</td>
<td>98</td>
<td>104</td>
<td>86</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>77</td>
<td>62</td>
<td>108</td>
<td>23</td>
<td>114</td>
<td>109</td>
<td>97</td>
<td>106</td>
<td>113</td>
<td>105</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>112</td>
<td>105</td>
<td>148</td>
<td>67</td>
<td>195</td>
<td>138</td>
<td>125</td>
<td>153</td>
<td>164</td>
<td>145</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>116</td>
<td>104</td>
<td>159</td>
<td>61</td>
<td>194</td>
<td>135</td>
<td>126</td>
<td>149</td>
<td>162</td>
<td>135</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>107</td>
<td>78</td>
<td>123</td>
<td>34</td>
<td>136</td>
<td>128</td>
<td>112</td>
<td>117</td>
<td>131</td>
<td>118</td>
</tr>
<tr>
<td>80</td>
<td>40</td>
<td>163</td>
<td>129</td>
<td>179</td>
<td>85</td>
<td>212</td>
<td>197</td>
<td>170</td>
<td>187</td>
<td>195</td>
<td>196</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>167</td>
<td>139</td>
<td>181</td>
<td>90</td>
<td>220</td>
<td>194</td>
<td>149</td>
<td>179</td>
<td>193</td>
<td>193</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>106</td>
<td>65</td>
<td>117</td>
<td>28</td>
<td>119</td>
<td>134</td>
<td>114</td>
<td>115</td>
<td>124</td>
<td>109</td>
</tr>
<tr>
<td>120</td>
<td>40</td>
<td>194</td>
<td>136</td>
<td>202</td>
<td>90</td>
<td>222</td>
<td>213</td>
<td>204</td>
<td>213</td>
<td>212</td>
<td>212</td>
</tr>
<tr>
<td>120</td>
<td>80</td>
<td>213</td>
<td>151</td>
<td>215</td>
<td>105</td>
<td>225</td>
<td>211</td>
<td>194</td>
<td>216</td>
<td>216</td>
<td>223</td>
</tr>
<tr>
<td>160</td>
<td>0</td>
<td>132</td>
<td>84</td>
<td>139</td>
<td>49</td>
<td>157</td>
<td>158</td>
<td>122</td>
<td>128</td>
<td>144</td>
<td>142</td>
</tr>
<tr>
<td>160</td>
<td>40</td>
<td>220</td>
<td>150</td>
<td>210</td>
<td>95</td>
<td>229</td>
<td>227</td>
<td>199</td>
<td>211</td>
<td>215</td>
<td>226</td>
</tr>
<tr>
<td>160</td>
<td>80</td>
<td>227</td>
<td>146</td>
<td>223</td>
<td>95</td>
<td>226</td>
<td>239</td>
<td>217</td>
<td>233</td>
<td>216</td>
<td>238</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>159</td>
<td>99</td>
<td>155</td>
<td>65</td>
<td>179</td>
<td>170</td>
<td>139</td>
<td>144</td>
<td>162</td>
<td>159</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>224</td>
<td>152</td>
<td>207</td>
<td>97</td>
<td>218</td>
<td>225</td>
<td>198</td>
<td>204</td>
<td>214</td>
<td>216</td>
</tr>
<tr>
<td>200</td>
<td>80</td>
<td>232</td>
<td>157</td>
<td>236</td>
<td>104</td>
<td>231</td>
<td>260</td>
<td>220</td>
<td>238</td>
<td>221</td>
<td>235</td>
</tr>
</tbody>
</table>

continued
Table 1. Nitrogen (N) and phosphorus (P) fertilization on irrigated corn yields, Tribune, KS, 2007-2016

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>lb/a</td>
<td>50f</td>
<td>48e</td>
<td>100e</td>
<td>23e</td>
<td>103d</td>
<td>88f</td>
<td>80e</td>
<td>93e</td>
<td>100e</td>
<td>79e</td>
<td>76e</td>
</tr>
<tr>
<td>40</td>
<td>lb/a</td>
<td>102e</td>
<td>91d</td>
<td>138d</td>
<td>50d</td>
<td>167c</td>
<td>127e</td>
<td>116d</td>
<td>136d</td>
<td>146d</td>
<td>129d</td>
<td>120d</td>
</tr>
<tr>
<td>80</td>
<td>lb/a</td>
<td>146d</td>
<td>115c</td>
<td>161c</td>
<td>70c</td>
<td>189b</td>
<td>173d</td>
<td>143c</td>
<td>161c</td>
<td>173c</td>
<td>169c</td>
<td>150c</td>
</tr>
<tr>
<td>120</td>
<td>lb/a</td>
<td>171c</td>
<td>118c</td>
<td>178b</td>
<td>74bc</td>
<td>189b</td>
<td>186c</td>
<td>171b</td>
<td>181b</td>
<td>184b</td>
<td>182b</td>
<td>163b</td>
</tr>
<tr>
<td>160</td>
<td>lb/a</td>
<td>193b</td>
<td>127b</td>
<td>191a</td>
<td>80ab</td>
<td>204a</td>
<td>208b</td>
<td>179ab</td>
<td>190ab</td>
<td>192ab</td>
<td>202a</td>
<td>177a</td>
</tr>
<tr>
<td>200</td>
<td>lb/a</td>
<td>205a</td>
<td>136a</td>
<td>199a</td>
<td>89a</td>
<td>209a</td>
<td>218a</td>
<td>186a</td>
<td>196a</td>
<td>199a</td>
<td>203a</td>
<td>184a</td>
</tr>
</tbody>
</table>

Least significant difference (0.05) 11 9 12 9 13 10 10 10 9 10 8

<table>
<thead>
<tr>
<th>P2O5, lb/a</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>lb/a</td>
<td>105b</td>
<td>71b</td>
<td>121c</td>
<td>36b</td>
<td>133b</td>
<td>131c</td>
<td>109b</td>
<td>116c</td>
<td>128b</td>
<td>118b</td>
<td>107c</td>
</tr>
<tr>
<td>40</td>
<td>lb/a</td>
<td>160a</td>
<td>122a</td>
<td>176b</td>
<td>76a</td>
<td>198a</td>
<td>181b</td>
<td>163a</td>
<td>177b</td>
<td>184a</td>
<td>179a</td>
<td>162b</td>
</tr>
<tr>
<td>80</td>
<td>lb/a</td>
<td>168a</td>
<td>125a</td>
<td>187a</td>
<td>81a</td>
<td>200a</td>
<td>189a</td>
<td>166a</td>
<td>186a</td>
<td>185a</td>
<td>185a</td>
<td>167a</td>
</tr>
</tbody>
</table>

Least significant difference (0.05) 8 6 9 7 9 7 7 6 7 5

*Note: Hail events on 7/23/10 and 5/28/15

1 Means within a column with the same letter are not statistically different at P = 0.05.
Table 2. Nitrogen (N) and phosphorus (P) fertilization on grain N and P content of irrigated corn, Tribune, KS, 2007-2016

<table>
<thead>
<tr>
<th>Fertilizer N</th>
<th>P<sub>2</sub>O<sub>5</sub></th>
<th>Grain N</th>
<th>P</th>
<th>N</th>
<th>P</th>
<th>Grain removal N</th>
<th>P</th>
<th>*AFNR<sub>x</sub></th>
<th>*AFPR<sub>x</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.99</td>
<td>0.230</td>
<td>0.47</td>
<td>0.109</td>
<td>31</td>
<td>7</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>40</td>
<td>0.95</td>
<td>0.312</td>
<td>0.45</td>
<td>0.147</td>
<td>35</td>
<td>12</td>
<td>---</td>
<td>24</td>
</tr>
<tr>
<td>0</td>
<td>80</td>
<td>0.96</td>
<td>0.321</td>
<td>0.45</td>
<td>0.152</td>
<td>36</td>
<td>12</td>
<td>---</td>
<td>14</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>1.15</td>
<td>0.182</td>
<td>0.55</td>
<td>0.086</td>
<td>49</td>
<td>8</td>
<td>45</td>
<td>---</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>0.97</td>
<td>0.301</td>
<td>0.46</td>
<td>0.143</td>
<td>61</td>
<td>19</td>
<td>75</td>
<td>67</td>
</tr>
<tr>
<td>40</td>
<td>80</td>
<td>0.98</td>
<td>0.323</td>
<td>0.46</td>
<td>0.153</td>
<td>61</td>
<td>21</td>
<td>75</td>
<td>37</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>1.26</td>
<td>0.177</td>
<td>0.60</td>
<td>0.084</td>
<td>64</td>
<td>9</td>
<td>40</td>
<td>---</td>
</tr>
<tr>
<td>80</td>
<td>40</td>
<td>1.05</td>
<td>0.257</td>
<td>0.50</td>
<td>0.122</td>
<td>84</td>
<td>21</td>
<td>66</td>
<td>74</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>1.03</td>
<td>0.310</td>
<td>0.49</td>
<td>0.147</td>
<td>82</td>
<td>25</td>
<td>63</td>
<td>49</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>1.25</td>
<td>0.170</td>
<td>0.59</td>
<td>0.081</td>
<td>61</td>
<td>8</td>
<td>24</td>
<td>---</td>
</tr>
<tr>
<td>120</td>
<td>40</td>
<td>1.14</td>
<td>0.226</td>
<td>0.54</td>
<td>0.107</td>
<td>102</td>
<td>20</td>
<td>58</td>
<td>71</td>
</tr>
<tr>
<td>120</td>
<td>80</td>
<td>1.10</td>
<td>0.297</td>
<td>0.52</td>
<td>0.140</td>
<td>102</td>
<td>28</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>160</td>
<td>0</td>
<td>1.25</td>
<td>0.176</td>
<td>0.59</td>
<td>0.083</td>
<td>73</td>
<td>10</td>
<td>26</td>
<td>---</td>
</tr>
<tr>
<td>160</td>
<td>40</td>
<td>1.18</td>
<td>0.242</td>
<td>0.56</td>
<td>0.114</td>
<td>110</td>
<td>22</td>
<td>49</td>
<td>84</td>
</tr>
<tr>
<td>160</td>
<td>80</td>
<td>1.17</td>
<td>0.281</td>
<td>0.56</td>
<td>0.133</td>
<td>114</td>
<td>27</td>
<td>51</td>
<td>55</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>1.24</td>
<td>0.186</td>
<td>0.59</td>
<td>0.088</td>
<td>83</td>
<td>12</td>
<td>26</td>
<td>---</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>1.20</td>
<td>0.239</td>
<td>0.57</td>
<td>0.113</td>
<td>110</td>
<td>22</td>
<td>39</td>
<td>82</td>
</tr>
<tr>
<td>200</td>
<td>80</td>
<td>1.19</td>
<td>0.295</td>
<td>0.56</td>
<td>0.140</td>
<td>119</td>
<td>30</td>
<td>44</td>
<td>62</td>
</tr>
</tbody>
</table>

continued
Table 2. Nitrogen (N) and phosphorus (P) fertilization on grain N and P content of irrigated corn, Tribune, KS, 2007-2016

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>Grain</th>
<th>Grain removal</th>
<th>*AFNR<sub>P</sub></th>
<th>*AFPR<sub>P</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>N</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Linear</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Quadratic</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Linear</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Quadratic</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Nitrogen × phosphorus</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Means<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen, lb/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.97<sup>c</sup></td>
<td>0.288<sup>a</sup></td>
<td>0.46<sup>e</sup></td>
<td>0.136<sup>a</sup></td>
</tr>
<tr>
<td>40</td>
<td>1.04<sup>d</sup></td>
<td>0.269<sup>b</sup></td>
<td>0.49<sup>d</sup></td>
<td>0.127<sup>b</sup></td>
</tr>
<tr>
<td>80</td>
<td>1.11<sup>c</sup></td>
<td>0.248<sup>c</sup></td>
<td>0.53<sup>c</sup></td>
<td>0.117<sup>c</sup></td>
</tr>
<tr>
<td>120</td>
<td>1.16<sup>b</sup></td>
<td>0.231<sup>d</sup></td>
<td>0.55<sup>b</sup></td>
<td>0.109<sup>d</sup></td>
</tr>
<tr>
<td>160</td>
<td>1.20<sup>a</sup></td>
<td>0.233<sup>d</sup></td>
<td>0.57<sup>a</sup></td>
<td>0.110<sup>d</sup></td>
</tr>
<tr>
<td>200</td>
<td>1.21<sup>a</sup></td>
<td>0.240<sup>cd</sup></td>
<td>0.57<sup>a</sup></td>
<td>0.114<sup>cd</sup></td>
</tr>
<tr>
<td>Least significant difference<sub>(0.05)</sub></td>
<td>0.02</td>
<td>0.011</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub>, lb/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.19<sup>a</sup></td>
<td>0.187<sup>c</sup></td>
<td>0.56<sup>a</sup></td>
<td>0.088<sup>c</sup></td>
</tr>
<tr>
<td>40</td>
<td>1.08<sup>b</sup></td>
<td>0.263<sup>b</sup></td>
<td>0.51<sup>b</sup></td>
<td>0.124<sup>b</sup></td>
</tr>
<tr>
<td>80</td>
<td>1.07<sup>b</sup></td>
<td>0.304<sup>a</sup></td>
<td>0.51<sup>b</sup></td>
<td>0.144<sup>a</sup></td>
</tr>
<tr>
<td>Least significant difference<sub>(0.05)</sub></td>
<td>0.01</td>
<td>0.008</td>
<td>0.01</td>
<td>0.004</td>
</tr>
</tbody>
</table>

*AFNR_P and AFPR_P = Apparent Fertilizer N Recovery (grain) and Apparent Fertilizer P Recovery (grain).

¹ Means within a column with the same letter are not statistically different at \(P = 0.05 \).