2017

Rates of Armezon Pro for Postemergence Weed Control in Fallow

R. Currie
Kansas State University, rscurrie@ksu.edu

P. Geier
Kansas State University, pgeier@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons, and the Weed Science Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2017 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Rates of Armezon Pro for Postemergence Weed Control in Fallow

R.S. Currie and P.W. Geier

Summary
A study was initiated near Garden City, KS, in 2016, comparing the weed control of several tank mixes of Armezon in fallow. Control of kochia and Russian thistle generally increased as Armezon Pro (topramezone + dimethenamid) rates increased from 14 to 20 oz/a. Although these herbicides injured the weeds present, smaller weeds will need to be targeted for effective control. The population of kochia was too thick and the size of the weeds was too large to allow enough coverage for this product to work under the conditions of this trial. The level of tissue damage suggests that further testing is needed with smaller weeds in a thinner population.

Introduction
Field observations have suggested that Armezon Pro might provide excellent burndown and residual control in fallow. It is not known when to apply Armezon Pro, what weeds it will control, and the duration of its residual control. Therefore, it was the objective of this study to establish a dose response relationship for Armezon Pro with a naturally occurring population of kochia and Russian thistle.

Experimental Procedures
An experiment conducted at the Kansas State University Southwest Research-Extension Center near Garden City, KS, evaluated the efficacy of Armezon Pro rates for postemergence weed control in fallow. All treatments were applied May 16, 2016, when kochia averaged 10 inches tall and 10 plants/square foot and Russian thistle averaged 4 inches in height and 1 plant per square foot. Herbicides were applied using a compressed-CO₂ backpack sprayer calibrated to deliver 20 GPA at 3.0 mph and 27 psi. Plots were 10- by 35-feet, and arranged in a randomized complete block with four replications. Soil was a Ulysses silt loam with pH of 8.0, organic matter of 1.4%, and cation exchange capacity of 18.4. Visual weed control was determined on May 23, June 1, and June 14, 2016, which was 7, 16, and 29 days after treatment (DAT).

Results and Discussion
At 7 and 16 DAT, control of kochia and Russian thistle generally increased as Armezon Pro rates increased from 14 to 20 oz/a. By 29 DAT, no differences occurred between herbicide rates. Although these herbicides injured the weeds present, smaller weeds will need to be targeted for effective control. Although field observations at other locations suggested that this product could work, the kochia was clearly too large and the popula-
tion was too dense to allow adequate coverage of the kochia and Russian thistle tissue. Based on the observed burning of the tissue, this study should be repeated on smaller weeds at lower populations to allow complete coverage of the tissue.

Table 1. Armezon Pro rates for fallow weed control

<table>
<thead>
<tr>
<th>Treatment*</th>
<th>Rate (oz/a)</th>
<th>Timing</th>
<th>7 days after treatment</th>
<th>16 days after treatment</th>
<th>29 days after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kochia</td>
<td>Russian thistle</td>
<td>Kochia</td>
</tr>
<tr>
<td>Armezon Pro</td>
<td>14</td>
<td>POST</td>
<td>27</td>
<td>20</td>
<td>66</td>
</tr>
<tr>
<td>Atrazine</td>
<td>16</td>
<td>POST</td>
<td>28</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td>COC</td>
<td>1%</td>
<td>POST</td>
<td>30</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>AMS</td>
<td>2%</td>
<td>POST</td>
<td>35</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>Armezon Pro</td>
<td>16</td>
<td>POST</td>
<td>28</td>
<td>18</td>
<td>63</td>
</tr>
<tr>
<td>Atrazine</td>
<td>16</td>
<td>POST</td>
<td>30</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>COC</td>
<td>1%</td>
<td>POST</td>
<td>35</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>AMS</td>
<td>2%</td>
<td>POST</td>
<td>35</td>
<td>28</td>
<td>70</td>
</tr>
<tr>
<td>Untreated</td>
<td>---</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Least significant difference (0.05) 5 5 7 4 7 6

* COC is crop oil concentrate, and AMS is ammonium sulfate.
Figure 1. Untreated control.

Figure 2. Armezon Pro 14 oz + atrazine 16 oz postemergence, 28 days after treatment.
Figure 3. Armezon Pro 16 oz + atrazine 16 oz postemergence, 28 days after treatment.

Figure 4. Armezon Pro 18 oz + atrazine 16 oz postemergence, 28 days after treatment.
Figure 5. Armezon Pro 20 oz + atrazine 16 oz postemergence, 28 days after treatment.