Foreword, Appendices

R. D. Goodband
Department of Animal Science and Industry, Kansas State University, goodband@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr
Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2017 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Foreword, Appendices

Abstract
It is with great pleasure that we present the 2017 Swine Industry Day Report of Progress. This report contains updates and summaries of applied and basic research conducted at Kansas State University during the past year. We hope that the information will be of benefit as we attempt to meet the needs of the Kansas swine industry.

Keywords
swine

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
Foreword

It is with great pleasure that we present the 2017 Swine Industry Day Report of Progress. This report contains updates and summaries of applied and basic research conducted at Kansas State University during the past year. We hope that the information will be of benefit as we attempt to meet the needs of the Kansas swine industry.

2017 Swine Day Report of Progress Editors
Bob Goodband
Mike Tokach
Steve Dritz
Joel DeRouchey
Jason Woodworth
Standard Abbreviations

ADG = average daily gain Mcal = megacalorie(s)
ADF = acid detergent fiber ME = metabolizable energy
ADFI = average daily feed intake mEq = milliequivalent(s)
AI = artificial insemination min = minute(s)
avg = average mg = milligram(s)
bu = bushel mL = cc (cubic centimeters)
BW = body weight mm = millimeter(s)
cm = centimeter(s) mo = month(s)
CP = crude protein MUFA = monounsaturated fatty acid
CV = coefficient of variation N = nitrogen
Cwt = 100 lb NE = net energy
d = day(s) NDF = neutral detergent fiber
DE = digestible energy NFE = nitrogen-free extract
DM = dry matter ng = nanogram(s), .001 Fg
DMI = dry matter intake no. = number
F/G = feed efficiency NRC = National Research Council
ft = foot(foot) ppb = parts per billion
ft² = square foot(foot) ppm = parts per million
g = gram(s) psi = pounds per square inch
µg = microgram(s), .001 mg PUFA = polyunsaturated fatty acid
gal = gallon(s) SD = standard deviation
GE = gross energy sec = second(s)
h = hour(s) SE = standard error
HCW = hot carcass weight SEM = standard error of the mean
in = inch(es) SEW = segregated early weaning
IU = international unit(s) SFA = saturated fatty acid
kg = kilogram(s) UFA = unsaturated fatty acid
kcal = kilocalorie(s) wk = week(s)
kWh = kilowatt hour(s) wt = weight(s)
lb = pound(s) yr = year(s)
K-State Vitamin and Trace Mineral Premixes

Diets listed in this report contain the following vitamin and trace mineral premixes unless otherwise specified.

- **Trace mineral premix:** Each pound of premix contains 10 g Mn, 33 g Fe, 33 g Zn, 5 g Cu, 90 mg I, and 90 mg Se.

- **Vitamin premix:** Each pound of premix contains 1,600,000 IU vitamin A, 400,000 IU vitamin D3, 8,000 mg vitamin E (dl-α-tocopherol acetate or 4,000 mg d-α-tocopherol acetate), 800 mg menadione, 1,500 mg riboflavin, 5,000 mg pantothenic acid, 15,000 mg niacin, and 7 mg vitamin B12.

- **Sow add pack:** Each pound of premix contains 100,000 mg choline, 40 mg biotin, 300 mg folic acid, 400 mg pyridoxine, 4,000 mg Vit E (dl-α-tocopherol acetate or 2,000 mg d-α-tocopherol acetate), 9,000 mg L-carnitine, and 36 mg Cr.

Note

Some of the research reported here was carried out under special U.S. Food and Drug Administration (FDA) clearances that apply only to investigational uses at approved research institutions. Materials that require FDA clearances may be used in the field only at the levels and for the use specified in that clearance.
Biological Variability and Chances of Error

Variability among individual animals in an experiment leads to problems in interpreting the results. Animals on treatment X may have higher average daily gains than those on treatment Y, but variability within treatments may indicate that the differences in production between X and Y were not the result of the treatment alone. Statistical analysis allows us to calculate the probability that such differences are from treatment rather than from chance.

In some of the articles herein, you will see the notation “$P < 0.05.$” That means the probability of the differences resulting from chance is less than 5%. If two averages are said to be “significantly different,” the probability is less than 5% that the difference is from chance, or the probability exceeds 95% that the difference resulted from the treatments applied.

Some papers report correlations or measures of the relationship between traits. The relationship may be positive (both traits tend to get larger or smaller together) or negative (as one trait gets larger, the other gets smaller). A perfect correlation is one (+1 or -1). If there is no relationship, the correlation is zero.

In other papers, you may see an average given as 2.5 ± 0.1. The 2.5 is the average; 0.1 is the “standard error.” The standard error is calculated to be 68% certain that the real average (with unlimited number of animals) would fall within one standard error from the average, in this case between 2.4 and 2.6.

Using many animals per treatment, replicating treatments several times, and using uniform animals increase the probability of finding real differences when they exist. Statistical analysis allows more valid interpretation of the results, regardless of the number of animals. In all the research reported herein, statistical analyses are included to increase the confidence you can place in the results.
Index of Key Words

added trace minerals feed-grade antibiotic
alternative finisher
amino acid finishing pig
amino acid ratios fish meal
AminoGut fish solubles
antibiotic formaldehyde
growth performance gestation
Bacillus subtilis gilt
benzoic acid glutamate
bone mineralization glutamine
calcium (Ca) growing pigs
clavamox growing-finishing pigs
cold pelleting growth performance
colostrum intake hammermill
computerized feeder HP 300
computerized feeder lactation
creep feed lactation crate size
creep feed linear programming
creep feed low birth weight pigs
choline Luminex
chlortetracycline (CTC) lysine
chromium propionate lysine requirement
cold pelleting maternal growth
colostrum intake medium chain fatty acid (MCFA)
cold pelleting mitigation
computerized feeder mixed models
computerized feeder modeling
computerized feeder molecular diagnostics
computerized feeder monosodium glutamate
computerized feeder mycotoxin
computerized feeder net energy
computerized feeder neutral detergent fiber
computerized feeder nursery
computerized feeder nursery pig
computerized feeder particle size
computerized feeder pelleting
computerized feeder phase-feeding
computerized feeder phosphorus (P)
computerized feeder phytase
computerized feeder phytogenics
computerized feeder polymerase chain reaction (PCR)
computerized feeder Porcine circo virus (PCV)
computerized feeder PCV2
computerized feeder PCV3
computerized feeder Porcine Epidemic Diarrhea Virus (PEDV)
computerized feeder Porcine reproductive and respiratory syndrome virus (PRRS)
computerized feeder post-weaning diarrhea (PWD)
computerized feeder preservatives
computerized feeder probiotic
computerized feeder ractopamine HCl
computerized feeder regression equations
computerized feeder reproduction
computerized feeder salt
computerized feeder screenings
computerized feeder sodium
computerized feeder sodium metabisulfite
computerized feeder sow
computerized feeder soybean meal
computerized feeder split suckling
computerized feeder supplementation
computerized feeder swine
computerized feeder thermal processing
computerized feeder tip speed
computerized feeder tri-basic copper chloride
computerized feeder tryptophan
computerized feeder vaccine
computerized feeder vomitoxin
computerized feeder weanling pig
computerized feeder Yucca schidigera
computerized feeder zinc (Zn)
Acknowledgments

Appreciation is expressed to these organizations for assisting with swine research at Kansas State University.

Abilene Animal Hospital, Abilene, KS
ADM Co., Decatur, IL
Ajinomoto Heartland LLC, Chicago, IL
Biowish Technologies, Cincinnati, OH
Ceva Animal Health, LLC, Lenexa, KS
Dave and Lois Baier, Abilene, KS
Daybrook Fisheries Inc., New Orleans, LA
Distributors Processing, Inc., Porterville, CA
DNA Genetics, Columbus, NE
DSM Nutritional Products, Parsippany, NJ
Feedlogic Corporation, Willmar, MN
Feed One Co., Ltd., Yokohama, Japan
Gourley Research Group, LLC, Webster City, IA
Hamlet Proteins, Findlay, OH
Haverkamp Brothers, Bern, KS
Holden Farms, Northfield, MN
Hubbard Feeds, Mankato, MN
ILC Resources, Urbandale, IA
International Ingredient Corporation, St. Louis, MO
INTL FCStone Financial Inc., Kansas City, MO
Iowa Select Farms, Inc., Iowa Falls, IA
JYGA Technologies, St. Nicolas, Quebec, Canada
Kalmbach Feeds, Upper Sandusky, OH
Kansas Pork Association, Manhattan, KS
Kansas Swine Alliance, Abilene, KS
Kemin Industries, Inc., Des Moines, IA
Livestock and Meat Industry Council, Manhattan, KS
Micronutrients, Indianapolis, IN
National Pork Board, Des Moines, IA
Natural Foods Holdings, Sioux City, IA
New Fashion Pork, Jackson, MN
New Horizon Farms, Pipestone, MN
PIC USA, Hendersonville, TN
Pipestone Applied Research, Pipestone, MN
Purco, Edgerton, MN
Quality Technology International, Inc., Elgin, IL
SVC Research, LLC, St. Peter, MN
Swine Health Information Center, Ames, IA
Bob and Karen Thaler, Brookings, SD
Thomas Livestock Company, Broken Bow, NE
Triumph Foods, St. Joseph, MO
Trouw Nutrition USA, Highland, IL
USDA National Institute of Food and Agriculture, Washington, D.C.
Zinpro Corp., Eden Prairie, MN
We especially appreciate the assistance and dedication of Kansas State University employees Duane Baughman, Frank Jennings, Mark Nelson, Chance Fiehler, Caitlin Evans, Ashton Yoder, and Theresa Rathbun.

Appreciation is also expressed to: Allan Morris, Heath Houselog, Marty Heintz, Craig Steck, Whitney Adler, and Bob Taubert, New Horizon Farms, Pipestone, MN, for their dedicated support.

Appreciation is expressed to Triumph Foods LLC, St. Joseph, MO, and Jerry Lehenbauer, Brad Knadler, Dr. Emily Arkfeld, and Dr. Barry Wisemann for technical assistance.

Swine Industry Day Committee
Duane Davis
Joel DeRouchey
Steve Dritz
Bob Goodband
Jim Nelssen
Mike Tokach
Jason Woodworth
The Livestock and Meat Industry Council, Inc.

The Livestock and Meat Industry Council, Inc. (LMIC) is a nonprofit charitable organization supporting animal agriculture research, teaching, and education. This is accomplished through the support of individuals and businesses that make LMIC a part of their charitable giving.

Tax-deductible contributions can be made through gifts of cash, appreciated securities, real estate, life insurance, charitable remainder trusts, and bequests as well as many other forms of planned giving. LMIC can also receive gifts of livestock, machinery, or equipment. These types of gifts, known as gifts-in-kind, allow the donor to be eligible for a tax benefit based on the appraised value of the gift.

Since its inception in 1970, LMIC has provided student scholarships, research assistance, capital improvements, land, buildings, and equipment to support students, faculty, and the industry of animal agriculture. If you would like to be a part of this mission or would like additional information, please contact the Livestock and Meat Industry Council/Animal Sciences and Industry, Weber Hall, Manhattan, Kansas 66506 or call 785-532-1227.

LMIC Board Members

David Clawson Roy Henry Lisa Moser
Doug Deets Patsy Houghton Stanton O’Neil
Mark Gardiner Virgil Huseman Rich Porter
Craig Good Justin Janssen Jim Riemann
Ken Grecian Debbie Lyons-Blythe Randall Spare
Kim Harms Steve Mangan Tom Toll
Frank Harper Bill Miller Warren Weibert

Royal Board Members

Dell Allen Steven Hunt Harland Priddle
Kyle Bauer Steve Irsik Lee Reeve
Jerry Bohn Larry Jones Don Smith
Richard Chase Kenny Knight Ken Stielow
Calvin Drake Mark Knight Mikel Stout
Stan Fansher Pat Koons Kathleen Strunk
Galen Fink Kelly Lechtenberg Duane Walker
Randy Fisher Jan Lyons
Lyle Gray Gina Miller
Sam Hands Andrew Murphy
Bernie Hansen Tom Perrier
Greg Henderson Phil Phar

Kansas State University Agricultural Experiment Station and Cooperative Extension Service