Kansas Agricultural Experiment Station Research Reports

Volume 4 Issue 1 *Cattlemen's Day*

Article 23

2018

Biological Variability and Chances of Error

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Animal Sciences Commons

Recommended Citation

(2018) "Biological Variability and Chances of Error," *Kansas Agricultural Experiment Station Research Reports*: Vol. 4: Iss. 1. https://doi.org/10.4148/2378-5977.7550

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2018 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.

CATTLEMEN'S DAY 2018

Biological Variability and Chances of Error

Variability among individual animals in an experiment leads to problems in interpreting the results. Animals on treatment X may have higher average daily gains than those on treatment Y, but variability within treatments may indicate that differences in production between X and Y were not the result of treatment alone. Statistical analysis allows us to calculate the probability that such differences are from treatment rather than chance.

In some of the articles herein, you will see the notation P<0.05. That means the probability of the differences resulting from chance is less than 5%. If two averages are said to be significantly different, the probability is less than 5% that the difference is from chance, or the probability exceeds 95% that the difference resulted from the treatments applied.

Some papers report correlations or measures of the relationship between traits. The relationship may be positive (both traits tend to get larger or smaller together) or negative (as one trait gets larger, the other gets smaller). A perfect correlation is one (+1 or -1). If there is no relationship, the correlation is zero.

In other papers, you may see an average given as 2.5 ± 0.1 . The 2.5 is the average; 0.1 is the standard error. The standard error is calculated to be 68% certain that the real average (with an unlimited number of animals) would fall within one standard error from the average, in this case between 2.4 and 2.6.

Using many animals per treatment, replicating treatments several times, and using uniform animals increase the probability of finding real differences when they exist. Statistical analysis allows more valid interpretation of the results, regardless of the number of animals. In all the research reported herein, statistical analyses are included to increase the confidence you can place in the results.