2018

Diflexx Duo Compared to Capreno, Halex GT, Armezon, Outlook, Status, Degree Xtra, and Bicep II Magnum for Weed Control in Irrigated Corn

R. S. Currie
Kansas State University, rscurrie@ksu.edu

P. W. Geier
Kansas State University, pgeier@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr
Part of the [Agronomy and Crop Sciences Commons](https://newprairiepress.org/kaesrr) and the [Weed Science Commons](https://newprairiepress.org/kaesrr)

Recommended Citation
Currie, R. S. and Geier, P. W. (2018) "Diflexx Duo Compared to Capreno, Halex GT, Armezon, Outlook, Status, Degree Xtra, and Bicep II Magnum for Weed Control in Irrigated Corn," *Kansas Agricultural Experiment Station Research Reports*: Vol. 4: Iss. 8.
https://doi.org/10.4148/2378-5977.7643

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2018 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Diflexx Duo Compared to Capreno, Halex GT, Armezon, Outlook, Status, Degree Xtra, and Bicep II Magnum for Weed Control in Irrigated Corn

Abstract
Control of kochia, quinoa, and green foxtail was complete with all herbicides at 78 days after treatment (DAT). Palmer amaranth, common sunflower, and crabgrass was 97% at 8 DAT. By 78 DAT, common sunflower control was complete with all herbicides. Crabgrass control at 78 DAT was excellent except when Diflexx Duo (dicamba + tembotrione) at 24 oz/a + atrazine was mixed with glyphosate or Liberty. All herbicide-treated corn yielded 111 to 126 bu/a more grain than the untreated controls. The various additions to the premixes improved weed control to the point that no difference occurred among them for yield.

Keywords
Single application, residual control

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Diflexx Duo Compared to Capreno, Halex GT, Armezon, Outlook, Status, Degree Xtra, and Bicep II Magnum for Weed Control in Irrigated Corn

R.S. Currie and P.W. Geier

Summary
Control of kochia, quinoa, and green foxtail was complete with all herbicides at 78 days after treatment (DAT). Palmer amaranth, common sunflower, and crabgrass was 97% at 8 DAT. By 78 DAT, common sunflower control was complete with all herbicides. Crabgrass control at 78 DAT was excellent except when Diflexx Duo (dicamba + tembotrione) at 24 oz/a + atrazine was mixed with glyphosate or Liberty. All herbicide-treated corn yielded 111 to 126 bu/a more grain than the untreated controls. The various additions to the premixes improved weed control to the point that no difference occurred among them for yield.

Introduction
Diflexx Duo is a very competitive herbicide package mix with Capreno, Halex GT (S-metolachlor + atrazine + mesotrione + glyphosate), Armezon (topramezone), Degree Xtra (acetochlor + atrazine), and Bicep II Magnum (S-metolachlor + atrazine). Each of these package mixes has different levels of preemergence and postemergence weed control. Adding other compounds—such as Liberty (glufosinate), Outlook (dimethenamid-P), and Status (dicamba + diflufenzopyr)—can often improve overall weed control. Therefore, it was the objective of this study to compare these compounds alone and with other products to measure their overall weed control.

Experimental Procedures
An experiment at the Kansas State University Southwest Research-Extension Center near Garden City, KS, evaluated the premix of Diflexx Duo with tank mixtures for postemergence efficacy compared to standards in corn. All herbicides were applied using a tractor-mounted, compressed-CO₂ sprayer delivering 20 GPA at 30 psi when corn was 5 to 8 inches tall. Application, environmental, crop, and weed information is shown in Table 1. Plot size was 10 × 35 feet and arranged in a randomized complete block with four replicates. Soil for the experiment was a Beeler silt loam with pH 7.6 and 2.4% organic matter. Visual weed control was evaluated on June 7 and August 16, 2017, which was 8 and 78 DAT, respectively. Corn yields were determined on October 18, 2017 by mechanically harvesting the center two rows of each plot and adjusting grain weights to 15.5% moisture.
Results and Discussion
Control of kochia, quinoa, and green foxtail was complete with all herbicides evaluated at 8 and 78 DAT (data not shown), and was 97% or more for Palmer amaranth, common sunflower, and crabgrass at 8 DAT (Table 2). By 78 DAT, common sunflower control was complete with all herbicides. On the same date, only Capreno + glyphosate and atrazine controlled Palmer amaranth less than 94%. Crabgrass control at 78 DAT was greatest with any herbicide treatment except when Diflexx Duo at 24 oz/a + atrazine was mixed with glyphosate or Liberty (85 to 86%). All herbicide-treated corn yielded 111 to 126 bu/a more grain than the untreated controls, but no difference occurred among herbicide treatments for yield.

Table 1. Application information

<table>
<thead>
<tr>
<th>Application timing</th>
<th>Postemergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application date</td>
<td>May 30, 2017</td>
</tr>
<tr>
<td>Air temperature (°F)</td>
<td>71</td>
</tr>
<tr>
<td>Relative humidity (%)</td>
<td>54</td>
</tr>
<tr>
<td>Soil temperature (°F)</td>
<td>64</td>
</tr>
<tr>
<td>Wind speed (mph)</td>
<td>5</td>
</tr>
<tr>
<td>Wind direction</td>
<td>West</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>Good</td>
</tr>
<tr>
<td>Corn</td>
<td></td>
</tr>
<tr>
<td>Height (inch)</td>
<td>5 to 8</td>
</tr>
<tr>
<td>Leaves (number)</td>
<td>3 to 4</td>
</tr>
<tr>
<td>Common sunflower</td>
<td></td>
</tr>
<tr>
<td>Height (inch)</td>
<td>6 to 10</td>
</tr>
<tr>
<td>Density (plants/ft²)</td>
<td>0.3</td>
</tr>
<tr>
<td>Palmer amaranth</td>
<td></td>
</tr>
<tr>
<td>Height (inch)</td>
<td>1 to 6</td>
</tr>
<tr>
<td>Density (plants/ft²)</td>
<td>1.9</td>
</tr>
<tr>
<td>Green foxtail</td>
<td></td>
</tr>
<tr>
<td>Height (inch)</td>
<td>3 to 6</td>
</tr>
<tr>
<td>Density (plants/ft²)</td>
<td>0.5</td>
</tr>
<tr>
<td>Kochia</td>
<td></td>
</tr>
<tr>
<td>Height (inch)</td>
<td>4 to 6</td>
</tr>
<tr>
<td>Density (plants/ft²)</td>
<td>0.3</td>
</tr>
<tr>
<td>Quinoa</td>
<td></td>
</tr>
<tr>
<td>Height (inch)</td>
<td>4 to 8</td>
</tr>
<tr>
<td>Density (plants/ft²)</td>
<td>0.5</td>
</tr>
<tr>
<td>Crabgrass</td>
<td></td>
</tr>
<tr>
<td>Height (inch)</td>
<td>3 to 5</td>
</tr>
<tr>
<td>Density (plants/ft²)</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Table 2. Diflexx Duo postemergence comparisons in corn.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate</th>
<th>Palmer amaranth</th>
<th>Common sunflower</th>
<th>Crabgrass</th>
<th>Corn yield</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>oz/a</td>
<td>8 DAT<sup>a</sup></td>
<td>78 DAT</td>
<td>8 DAT</td>
<td>78 DAT</td>
</tr>
<tr>
<td>Untreated</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>32</td>
<td>100</td>
<td>96</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>32</td>
<td>100</td>
<td>99</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Atrazine</td>
<td>16</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>1%</td>
<td>100</td>
<td>97</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>32</td>
<td>100</td>
<td>91</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Crop oil concentrate</td>
<td>1%</td>
<td>100</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>1%</td>
<td>100</td>
<td>97</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Capreno</td>
<td>3.0</td>
<td>100</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>32</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>Atrazine</td>
<td>16</td>
<td>100</td>
<td>98</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>1%</td>
<td>100</td>
<td>97</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>Halex GT</td>
<td>3.6 pt</td>
<td>100</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Atrazine</td>
<td>16</td>
<td>100</td>
<td>98</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Nonionic surfactant</td>
<td>0.25%</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>1%</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>Armezon</td>
<td>0.57</td>
<td>99</td>
<td>100</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Outlook</td>
<td>14</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>32</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Atrazine</td>
<td>16</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>1%</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Degree Xtra</td>
<td>3.0 qt</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>32</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>32</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>1%</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bicep II Magnum</td>
<td>1.6 qt</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Diflexx Duo</td>
<td>32</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>32</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
<td>1%</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

^a DAT = days after herbicide treatment. Weed control determined on June 7 and August 16, 2017. Corn yields determined on October 18, 2017.
Figure 1. Untreated control.

Figure 2. Diflexx Duo 32 oz/a + glyphosate 32 oz/a + atrazine 16 oz/a and ammonium sulfate 1% applied postemergence, 24 days after treatment.
Figure 3. Diflexx Duo 24 oz/a + glyphosate 32 oz/a + atrazine 16 oz/a and ammonium sulfate 1% applied postemergence, 24 days after treatment.

Figure 4. Diflexx Duo 24 oz/a + Liberty 32 oz/a + atrazine 16 oz/a and ammonium sulfate 1% applied postemergence, 24 days after treatment.
Figure 5. Bicep II Magnum 1.6 qt/a + Diflexx Duo 32 oz/a + glyphosate 32 oz/a and ammonium sulfate 1% applied postemergence, 24 days after treatment.