Effects of Sodium Metabisulfite Additives on Nursery Pig Growth

D. J. Shawk
Kansas State University, Manhattan, dshawk@ksu.edu

S. S. Dritz
Kansas State University, Manhattan, dritz@k-state.edu

R. D. Goodband
Kansas State University, Manhattan, goodband@k-state.edu

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation
Effects of Sodium Metabisulfite Additives on Nursery Pig Growth

Cover Page Footnote
We wish to express appreciation to Kayla Nelson and Hord Family Farms (Bucyrus, OH) for assistance with this trial.

Authors
Effects of Sodium Metabisulfite Additives on Nursery Pig Growth

Summary

Sodium metabisulfite (SMB)-based feed additive efficacy was evaluated in 3 nursery pig growth experiments where pigs were fed diets containing low deoxynivalenol (< 1.5 ppm; DON) concentrations. Pigs were weaned at approximately 22 d of age and randomly allotted to pens with one pen of 27 gilts and one pen of 27 barrows per fence line feeder, thus feeder was the experimental unit. In experiment 1, 2,268 pigs were used in a 35-d trial with 21 feeders per treatment. Experimental treatments included a control diet or the control with 0.50% SMB-based Product 1 (Defusion; Provimi, Brooksville, OH) fed in phase 1 and 0.25% fed in phases 2 and 3, then all pigs were fed a control diet for the last week of the study. Pigs fed Product 1 had greater (P < 0.05) average daily gain (ADG), average daily feed intake (ADFI), and feed/gain ratio (F/G) compared to pigs fed the control diet from d 0 to 28. However, from d 28 to 35, the opposite response was observed, with pigs fed the control diet having greater ADG and improved F/G than pigs previously fed Product 1. Despite this response, pigs fed Product 1 were heavier (P < 0.05) on d 35 than control-fed pigs. In experiment 2, 4,320 pigs were used in a 42-d trial with 8 or 16 feeders per treatment. Pigs were fed a control diet or diets with either SMB-based Product 1 or Product 2 (Nutriquest, Mason City, IA) at different concentrations and durations. Among the various treatments, Product 1 or Product 2 concentrations ranged from 0.50% initially to 0.25%, 0.15%, or none the last week of the study. Overall, pigs fed either of the additives at the highest concentrations and for the longest period of time had greater (P < 0.05) ADG and ADFI compared to pigs fed the control diet, with those fed lower concentrations or shorter durations intermediate. In experiment 3, 2,808 pigs were used in a 28-d trial with 13 feeders per treatment. All pigs were fed a common diet for 7 d after weaning. Pigs were then either fed a control diet or diets containing Product 1 (0.50 and 0.25% from d 0 to 21 and 21 to 28 respectively), SMB (0.50 and 0.25% from day 0 to 21 and 21 to 28 respectively) or 0.25% SMB from day 0 to 28. Overall, pigs fed Product 1 or high SMB diets had greater (P < 0.05) ADG compared to pigs fed low SMB or control diets. Collectively, these studies suggest that in diets with low DON concentrations, these SMB-based products increased ADG compared to pigs fed control diets.

¹Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University.

We wish to express appreciation to Kayla Nelson and Hord Family Farms (Bucyrus, OH) for assistance with this trial.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service
Introduction

Deoxynivalenol (DON), or vomitoxin, is a mycotoxin found in cereal grains and is produced by the *Fusarium* genus. The DON concentration of cereal grains can vary from year to year, based on the degree of stress the plant is exposed to during the growing season, such as poor soil fertility, harsh weather conditions, and insect damage. Swine are sensitive to DON with exposure to concentrations greater than 1 ppm resulting in decreased feed intake and growth, while exposure to higher concentrations can result in complete feed refusal and vomiting. Although not approved by U.S. Food and Drug Administration as DON detoxifying agents, sodium metabisulfite (SMB)-based feed additives have been used in diets with high DON concentrations with positive results. There is a positive relationship between growth performance and the addition of SMB-containing feed additives in swine diets with greater than 3 ppm of DON.\(^2\)\(^{,3,4}\) However, there is limited research available to document the effects of SMB-based feed additives on growth performance of nursery pigs fed diets with relatively little to no DON. Therefore, the objective of these experiments was to determine the effects of SMB-based feed additives in low-DON containing diets on the growth performance of nursery pigs weighing approximately 13 to 33 lb.

Procedures

General

The Kansas State University Institutional Animal Care and Use Committee approved the protocol used in these studies. The experiments were conducted at a commercial research facility located in north central Ohio. Each pen (8.5 × 9 ft) contained approximately 27 barrows or gilts and a double-sided 5-hole stainless steel fence line feeder. Therefore, the experimental unit was the feeder. Each pen also contained a cup-waterer, and feed and water were provided *ad libitum*. Feed additions to each individual pen were made and recorded by an electronic feeding system (Dry Exact; Big Dutchman, Inc. Holland, MI). Experimental diets were manufactured at the Hord Elevator (Bucyrus, OH). Feed samples were collected from 6 feeders per treatment per phase, pooled, and subsampled for chemical analysis. Pens of pigs were weighed and feed disappearance was recorded every 7 days to determine ADG, ADFI, and F/G.

Experiment 1

A total of 2,268 pigs (PIC 337 × 1050; initial body weight (BW) 15 lb) were used in a 35-d growth trial. Pigs were weaned at approximately 22 d of age and were randomly sorted into 1 of 84 pens (42 pens of barrows, 42 pens of gilts) with 1 pen of gilts and 1 pen of barrows per fence line feeder. A pair of pens (1 adjoining feeder) were blocked

by body weight and weaning date and then randomly assigned to 1 of 2 dietary treat-
ments in a randomized complete block design with 21 feeders per treatment. Dietary
treatments included a control diet or the control with 0.50% Product 1 in phase 1
and 0.25% in phases 2 and 3 (Table 1). From day 28 to 35, all pigs were fed a common
diet without Product 1. Product 1 (Defusion; Provimi, Brooksville, OH) is a com-
mercially available preservative that is a blend of SMB (92%), organic acids, fer-
m entation products, and supplemental vitamins and amino acids. For phase 1, pigs were offered
1.50 lb of feed, which lasted from day 0 to approximately day 5. Then phase 2 diets were
provided until day 21, phase 3 diets were fed from day 21 to 28, with all pigs receiving a
control diet without preservative from day 28 to 35.

Experiment 2
A total of 4,320 pigs (PIC 337 × 1050; initial weight 14 lb) were used in a 42-d growth
trial. Pigs were weaned at approximately 22 d of age and were randomly sorted into 1 of
160 pens (80 pens of barrows, 80 pens of gilts) with 1 pen of gilts and 1 pen of barrows
per fence line feeder. A pair of pens (1 adjoining feeder) were blocked by body weight
and weaning date and then randomly assigned to 1 of 5 dietary treatments that were
fed for 35 d in a randomized complete block design. Dietary treatments included: 1) a
control diet; 2) the control diets with 0.50% Product 1 fed for 7 days followed by 0.25%
Product 1 from day 7 to 35; 3) control diet containing 0.50% Product 2 from day 0 to
7, 0.25% from day 7 to 28, and 0.15% from day 28 to 35; 4) control diet containing
0.50% Product 2 from day 0 to 7 and 0.25% from day 7 to 35; and 5) control diet
containing 0.50% Product 2 from day 0 to 28 and 0.25% from day 28 to 35 (Table 2).
Then on day 35, half of the pens receiving either Product 1 or Product 2 remained on
those treatments and the other half were switched to the control diet. These combina-
tions resulted in a total of 9 treatments. There were 16 replications (feeders) for all
treatments from day 0 to 35 and 8 replications per treatment from day 35 to 42 for all
treatments except for the control, which continued to have 16 replications per treat-
ment. Product 2 (NutriQuest, Mason City, IA) is a custom-made preservative and anti-
caking agent that contains SMB (92%), bentonite, and mineral oil.

Experiment 3
A total of 2,808 pigs (PIC 337 × 1050; initial weight 15 lb) were used in a 28-d growth
trial. Pigs were weaned at approximately 22 d of age and were randomly sorted into
1 of 104 pens (52 pens of barrows, 52 pens of gilts) with 1 pen of gilts and 1 pen of
barrows per fence line feeder. All pigs were fed a common phase 1 diet for 7 days, then
7 days after weaning, considered d 0 of the trial, a pair of pens (1 adjoining feeder) were
blocked by weight and randomly assigned to one of four dietary treatments with 13
feeders per treatment. Dietary treatments were fed for 28 d. The four treatments were:
1) a control diet; 2) control diet with 0.50% Product 1 from day 0 to 21 followed by
0.25% Product 1 from day 21 to 28; 3) control diet with 0.25% SMB from day 0 to 28;
and 4) control diet with 0.5% SMB from day 0 to 21 followed by 0.25% SMB from day
21 to 28 (Table 3).

Chemical analysis
Feed samples for all three experiments were submitted to North Dakota Grain Inspec-
tion Service, Inc. (Bucyrus, OH) for DON analysis. Dietary DON concentrations for
experiment 1 were determined by the RIDASCREEN FAST DON SC ELISA test kit
(R-Biopharm AG, Darmstadt, Germany). Dietary DON concentration for experiments 2 and 3 were determined by ROSA DONQ2 Quantitative Test (Charms Sciences, Inc., Lawrence, MA). North Dakota Grain Inspection Service, Inc., follows the Federal Grain Inspection Service guidelines that considers the standard certification limits for these assays to be 0.5 to 5 ppm. Thus, the minimum detection limit for both assays was 0.5 ppm.

Statistical analysis

Feeder was considered the experimental unit (1 pen of barrows and 1 pen of gilts) for all experiments. Means are reported as least square means with pooled standard error of the means. For experiments 2 and 3, individual treatment means were separated using the Tukey-Kramer multiple comparison test. Data for all experiments were analyzed as a randomized complete block design using PROC GLIMMIX in SAS version 9.4 (SAS Institute, Inc., Cary, NC). Results were considered significant at \(P \leq 0.05 \) and marginally significant between \(P > 0.05 \) and \(P \leq 0.10 \).

Results and Discussion

Chemical Analysis

Chemical analysis of experiments 1 and 3 diets indicated that dietary DON concentrations of all diets, regardless of phase, were less than 0.5 ppm or below the detectable limit (Table 4 and 6). For experiment 2 (Table 5), the control diet had DON concentrations ranging from 1.1 to 1.5 ppm. Both the Product 1-based diets had DON concentrations equal to or less than 1.3 ppm. Diets containing Product 2 had DON concentrations equal to or less than 1.1 ppm.

Experiment 1

From d 0 to 28, pigs fed diets containing Product 1 had greater \((P < 0.05) \) ADG, ADFI, d 28 body weight, and improved \((P < 0.05) \) F/G compared to those fed the control diet (Table 7). However, from d 28 to 35, when all pigs were fed a control diet, the opposite effect was observed. Pigs previously fed the diets containing Product 1 had decreased \((P < 0.05) \) ADG and ADFI and increased F/G compared to pigs fed the control diet. Regardless, overall (day 0 to 35) ADG, ADFI, and d 35 body weight were greater \((P < 0.05) \) and F/G lower for those pigs fed diets containing Product 1.

Experiment 2

From d 0 to 35, pigs fed the control diet had decreased \((P < 0.05) \) ADG, ADFI, and d 35 body weight compared to pigs fed the Product 1 or Product 2 combinations (Table 8). The response to SMB products (Product 1 or Product 2) was in a dose-dependent manner, with pigs fed the highest level of Product 2 having greater \((P < 0.05) \) performance than the other Product 2 diets. There was no evidence for difference between pigs fed similar levels of Product 1 and Product 2. Feed efficiency was improved \((P < 0.05) \) for pigs fed the highest levels of Product 2 compared with pigs fed diets with the lowest levels of Product 2, with pigs fed other diets intermediate.

On d 35, pigs either remained on their respective Product 1 or 2 diets or were switched to a diet without feed preservative. During this period, those pigs switched to a diet without feed preservative had decreased ($P < 0.05$) ADG and ADFI compared with the pigs remaining on their respective feed preservative, with those fed the control diet intermediate.

Overall, pigs fed the Product 1 at the highest level had greater ($P < 0.05$) ADG and ADFI compared to pigs fed the control diet, with pigs fed the other diets intermediate. There was no evidence to indicate dietary treatment influenced F/G. Pigs fed the control diet had lower ($P < 0.05$) d 42 body weight compared to the other dietary treatments. Pigs fed Product 1 at the highest level had greater ($P < 0.05$) d 42 body weight compared to pigs fed the two lowest levels of Product 1, with pigs fed the other preservative-containing diets intermediate.

Experiment 3

From d 0 to 21, pigs fed 0.25% SMB had decreased ($P < 0.05$) ADG compared to pigs fed the other diets (Table 9). Pigs fed Product 1 or 0.50% SMB had greater ($P < 0.05$) ADG compared to pigs fed the other diets. Pigs fed Product 1 or 0.50% SMB had greater ($P < 0.05$) ADFI compared to pigs fed the control, with pigs fed 0.25% SMB intermediate. Pigs fed 0.25% SMB had poorer ($P < 0.05$) F/G than pigs fed the other dietary treatments. Pigs fed 0.50% SMB had improved ($P < 0.05$) F/G compared with pigs fed the control, with pigs fed Product 1 intermediate.

From d 21 to 28, pigs fed 0.25% SMB for the entire experiment had greater ($P < 0.05$) ADG compared to pigs fed the other diets. Pigs fed Product 1 had greater ($P < 0.05$) ADG compared to pigs fed the control diet, with pigs fed 0.50% SMB intermediate followed by 0.25% SMB. Pigs fed Product 1 had increased ($P < 0.05$) ADFI compared to pigs fed the control, with others intermediate. Pigs fed 0.25% SMB for the entire trial had improved ($P < 0.05$) F/G compared with pigs fed other diets.

From d 0 to 28, pigs fed Product 1 or 0.50% SMB had greater ($P < 0.05$) ADG compared to pigs fed 0.25% SMB or the control diet. Pigs fed Product 1 or 0.50% SMB had increased ($P < 0.05$) ADFI compared to pigs fed the control, with pigs fed the 0.25% SMB intermediate. Pigs fed 0.50% SMB had improved ($P < 0.05$) F/G compared with pigs fed the control diet, with those fed Product 1 intermediate. Pigs fed 0.25% SMB had poorer ($P < 0.05$) F/G compared to pigs fed the other treatments. Pigs fed 0.50% SMB or Product 1 had greater ($P < 0.05$) d 28 BW than pigs fed the other dietary treatments.

In conclusion, in diets relatively low in DON, pigs fed SMB-based preservatives had improved ADG compared to pigs fed a control diet. At the dietary concentrations of the product tested, the greater inclusion and longer feeding duration resulted in the greatest benefit. The mode of action for the improvement in performance is unclear. In high DON diets, the biological mechanism of SMB is suggested to be the
chemical alteration of DON to a nontoxic DON-sulfonate adduct form. However, in low DON diets the biological mechanism of SMB is unclear. Sodium metabisulfite is commonly used in the food industry as an antioxidant and antimicrobial agent. Previous research has indicated improvements in energy and protein utilization in broilers fed sorghum-based diets that were steam pelleted with SMB. The biological mechanism of this improvement in protein and energy utilization is suggested to be the oxidative-reductive depolymerization of starch polysaccharides and the reduction of disulfide cross linkages in proteins, thus improving protein and starch availability. A portion of the response to SMB appears to be lost after pigs are switched from diets containing SMB additives to diets without. The reason that part of the growth response is lost when pigs are switched to a diet without SMB is also not clear and needs further investigation. Further research should be conducted to determine the biological mechanism of SMB in low DON diets.

Table 1. Diet composition, Experiment 1 (as-fed basis)^1

<table>
<thead>
<tr>
<th>Ingredient, %</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>35.8</td>
<td>50.77</td>
<td>48.27</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>20.87</td>
<td>31.57</td>
<td>33.06</td>
</tr>
<tr>
<td>Wheat</td>
<td>3.00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bakery meal</td>
<td>---</td>
<td>---</td>
<td>12.50</td>
</tr>
<tr>
<td>Milk, whey powder</td>
<td>25.00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dairylac 80^2</td>
<td>---</td>
<td>9.00</td>
<td>---</td>
</tr>
<tr>
<td>HP 300^3</td>
<td>7.50</td>
<td>2.50</td>
<td>---</td>
</tr>
<tr>
<td>Corn oil</td>
<td>4.00</td>
<td>1.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.85</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>Monocalcium phosphate, 21%</td>
<td>0.73</td>
<td>1.50</td>
<td>0.85</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>0.50</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>L-Lysine HCl</td>
<td>0.45</td>
<td>0.48</td>
<td>0.45</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.30</td>
<td>0.31</td>
<td>0.25</td>
</tr>
<tr>
<td>L-Threonine</td>
<td>0.21</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>0.06</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>L-Valine</td>
<td>0.12</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>Vitamin and trace mineral premix^4</td>
<td>0.15</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>0.38</td>
<td>0.25</td>
<td>---</td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>---</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Choline chloride, 60%</td>
<td>0.04</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Quantum 5000 L^5</td>
<td>0.05</td>
<td>0.05</td>
<td>---</td>
</tr>
<tr>
<td>Quantum Blue 2G^6</td>
<td>---</td>
<td>---</td>
<td>0.10</td>
</tr>
<tr>
<td>Product 1^7</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

continued
Table 1. Diet composition, Experiment 1 (as-fed basis)\(^1\)

<table>
<thead>
<tr>
<th>Ingredient, %</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysine</td>
<td>1.40</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>Isoleucine:lysine</td>
<td>58</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>Leucine:lysine</td>
<td>107</td>
<td>109</td>
<td>113</td>
</tr>
<tr>
<td>Methionine:lysine</td>
<td>40</td>
<td>41</td>
<td>38</td>
</tr>
<tr>
<td>Methionine and cystine:lysine</td>
<td>58</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>Threonine:lysine</td>
<td>63</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>Tryptophan:lysine</td>
<td>21.2</td>
<td>20.4</td>
<td>18.5</td>
</tr>
<tr>
<td>Valine:lysine</td>
<td>67</td>
<td>70</td>
<td>68</td>
</tr>
<tr>
<td>Total lysine, %</td>
<td>1.56</td>
<td>1.57</td>
<td>1.53</td>
</tr>
<tr>
<td>Net energy, kcal/lb</td>
<td>1,098</td>
<td>1,122</td>
<td>1,128</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>21.0</td>
<td>21.4</td>
<td>21.3</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.74</td>
<td>0.77</td>
<td>0.67</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.66</td>
<td>0.76</td>
<td>0.59</td>
</tr>
<tr>
<td>Available phosphorus, %</td>
<td>0.55</td>
<td>0.59</td>
<td>0.40</td>
</tr>
</tbody>
</table>

\(^1\)Experimental diet were fed in three phases with dietary phases formulated for BW ranges of 11 to 15, 15 to 24, and 24 to 44 lb.

\(^2\)International Ingredients, Inc. (St. Louis, MO).

\(^3\)Hamlet Protein (Findlay, OH).

\(^4\)Provided per kilogram of premix: 26 g Mn from manganese oxide; 66 g Fe from iron sulfate; 88 g Zn from zinc sulphate; 11 g Cu from copper sulfate; 220 mg I from calcium iodate; and 198 mg Se from sodium selenite; 6,613,860 IU vitamin A; 1,468,277 IU vitamin D\(_3\); 44,092 IU vitamin E; 154 mg biotin; 1,102 mg folic acid; 2,205 mg pyridoxine; 6,614 mg riboflavin; 2,866 mg menadione; 22,046 mg pantothenic acid; 28,660 mg niacin; 6,614 mg thiamine; and 22 mg vitamin B12.

\(^5\)Quantum 5000 (AB Vista, Plantation, FL) provided an estimated release of 0.14% available P.

\(^6\)Quantum Blue 2G (AB Vista, Plantation, FL) provided an estimated release of 0.14% available P.

\(^7\)Product 1 (Defusion; Provimi, Brooksville, OH).
Table 2. Diet composition, Experiment 2 (as-fed basis)\(^1\)

<table>
<thead>
<tr>
<th>Ingredient, %</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>35.80</td>
<td>50.77</td>
<td>48.27</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>20.87</td>
<td>31.57</td>
<td>33.06</td>
</tr>
<tr>
<td>Wheat</td>
<td>3.00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bakery meal</td>
<td>---</td>
<td>---</td>
<td>12.50</td>
</tr>
<tr>
<td>Milk, whey powder</td>
<td>25.00</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dairylac 80(^2)</td>
<td>---</td>
<td>9.00</td>
<td>---</td>
</tr>
<tr>
<td>HP 300(^3)</td>
<td>7.50</td>
<td>2.50</td>
<td>---</td>
</tr>
<tr>
<td>Corn oil</td>
<td>4.00</td>
<td>1.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.85</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>Monocalcium phosphate, 21%</td>
<td>0.73</td>
<td>1.50</td>
<td>0.85</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>0.50</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>L-Lysine HCl</td>
<td>0.45</td>
<td>0.48</td>
<td>0.45</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.30</td>
<td>0.31</td>
<td>0.25</td>
</tr>
<tr>
<td>L-Threonine</td>
<td>0.21</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>0.06</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>L-Valine</td>
<td>0.12</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>Vitamin and trace mineral premix(^4)</td>
<td>0.15</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>0.38</td>
<td>0.25</td>
<td>---</td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>---</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Choline chloride, 60%</td>
<td>0.04</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Quantum 5000 L(^5)</td>
<td>0.05</td>
<td>0.05</td>
<td>---</td>
</tr>
<tr>
<td>Quantum Blue 2G(^6)</td>
<td>---</td>
<td>---</td>
<td>0.10</td>
</tr>
<tr>
<td>Product 1(^7)</td>
<td>-/+</td>
<td>-/+</td>
<td>-/+</td>
</tr>
<tr>
<td>Product 2(^8)</td>
<td>-/+</td>
<td>-/+</td>
<td>-/+</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

continued
Table 2. Diet composition, Experiment 2 (as-fed basis)1

<table>
<thead>
<tr>
<th>Ingredient, %</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardized ileal digestible (SID) AA, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td>1.40</td>
<td>1.42</td>
<td>1.38</td>
</tr>
<tr>
<td>Isoleucine:lysine</td>
<td>58</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>Leucine:lysine</td>
<td>107</td>
<td>109</td>
<td>113</td>
</tr>
<tr>
<td>Methionine:lysine</td>
<td>40</td>
<td>41</td>
<td>38</td>
</tr>
<tr>
<td>Methionine and cystine:lysine</td>
<td>58</td>
<td>59</td>
<td>57</td>
</tr>
<tr>
<td>Threonine:lysine</td>
<td>63</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>Tryptophan:lysine</td>
<td>21.2</td>
<td>20.4</td>
<td>18.5</td>
</tr>
<tr>
<td>Valine:lysine</td>
<td>67</td>
<td>70</td>
<td>68</td>
</tr>
<tr>
<td>Total lysine, %</td>
<td>1.56</td>
<td>1.57</td>
<td>1.53</td>
</tr>
<tr>
<td>Net energy, kcal/lb</td>
<td>1,098</td>
<td>1,122</td>
<td>1,128</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>21.0</td>
<td>21.4</td>
<td>21.3</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.74</td>
<td>0.77</td>
<td>0.67</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.66</td>
<td>0.76</td>
<td>0.59</td>
</tr>
<tr>
<td>Available phosphorus, %</td>
<td>0.55</td>
<td>0.59</td>
<td>0.40</td>
</tr>
</tbody>
</table>

1Experimental diet were fed in three phases with dietary phases formulated for 11 to 15, 15 to 24, and 24 to 44 lb BW ranges.
2International Ingredients, Inc. (St. Louis, MO).
3Hamlet Protein, (Findlay, OH).
4Provided per kilogram of premix: 26 g Mn from manganese oxide; 66 g Fe from iron sulfate; 88 g Zn from zinc sulphate; 11 g Cu from copper sulfate; 220 mg I from calcium iodate; and 198 mg Se from sodium selenite; 6,613,860 IU vitamin A; 1,468,277 IU vitamin D3; 44,092 IU vitamin E; 154 mg biotin; 1,102 mg folic acid; 2,205 mg pyridoxine; 6,614 mg riboflavin; 2,866 mg menadione; 22,046 mg pantothenic acid; 28,660 mg niacin; 6,614 mg thiamine; and 22 mg vitamin B12.
5Quantum 5000 (AB Vista, Plantation, FL) provided an estimated release of 0.14% available P.
6Quantum Blue 2G (AB Vista, Plantation, FL) provided an estimated release of 0.14% available P.
7Product 1 (Defusion; Provimi, Brooksville, OH) was included at the expense of corn.
8Product 2 (NutriQuest, Mason City, IA) was included at the expense of corn.
Table 3. Diet composition, Experiment 3 (as-fed basis)\(^1\)

<table>
<thead>
<tr>
<th>Ingredient, %</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>50.77</td>
<td>57.43</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>31.57</td>
<td>33.10</td>
</tr>
<tr>
<td>Dairylac 80(^2)</td>
<td>9.00</td>
<td>---</td>
</tr>
<tr>
<td>HP 300(^3)</td>
<td>2.50</td>
<td>---</td>
</tr>
<tr>
<td>Corn oil</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.85</td>
<td>1.05</td>
</tr>
<tr>
<td>Monocalcium phosphate, 21%</td>
<td>1.50</td>
<td>0.85</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>0.60</td>
<td>0.50</td>
</tr>
<tr>
<td>L-Lysine HCl</td>
<td>0.48</td>
<td>0.43</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>L-Threonine</td>
<td>0.27</td>
<td>0.22</td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>L-Valine</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>Vitamin and trace mineral premix(^4)</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>Zinc oxide</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Copper sulfate</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Quantum 5000 L(^5)</td>
<td>0.05</td>
<td>---</td>
</tr>
<tr>
<td>Quantum Blue 2G(^6)</td>
<td>---</td>
<td>0.10</td>
</tr>
<tr>
<td>Product 1(^7)</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Sodium metabisulfite(^8)</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td>Ingredient, %</td>
<td>Phase 1</td>
<td>Phase 2</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.42</td>
<td>1.37</td>
</tr>
<tr>
<td>Isoleucine:lysine</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>Leucine:lysine</td>
<td>109</td>
<td>115</td>
</tr>
<tr>
<td>Methionine:lysine</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>Methionine and cystine:lysine</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>Threonine:lysine</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>Tryptophan:lysine</td>
<td>20.4</td>
<td>18.6</td>
</tr>
<tr>
<td>Valine:lysine</td>
<td>70</td>
<td>68</td>
</tr>
<tr>
<td>Total lysine, %</td>
<td>1.57</td>
<td>1.53</td>
</tr>
<tr>
<td>Net energy, kcal/lb</td>
<td>1,082</td>
<td>1,099</td>
</tr>
<tr>
<td>Crude protein, %</td>
<td>21.4</td>
<td>21.2</td>
</tr>
<tr>
<td>Calcium, %</td>
<td>0.77</td>
<td>0.68</td>
</tr>
<tr>
<td>Phosphorus, %</td>
<td>0.76</td>
<td>0.62</td>
</tr>
<tr>
<td>Available phosphorus, %</td>
<td>0.59</td>
<td>0.41</td>
</tr>
</tbody>
</table>

1Experimental diet were fed in three phases with dietary phases formulated for 15 to 24, and 24 to 44 lb BW ranges.
2International Ingredients, Inc., St. Louis, MO.
3Hamlet Protein, Findlay, OH.
4Provided per kilogram of premix: 26 g Mn from manganese oxide; 66 g Fe from iron sulfate; 88 g Zn from zinc sulphate; 11 g Cu from copper sulfate; 220 mg I from calcium iodate; and 198 mg Se from sodium selenite; 6,613,860 IU vitamin A; 1,468,277 IU vitamin D; 44,092 IU vitamin E; 1,102 mg folic acid; 2,205 mg pyridoxine; 6,614 mg riboflavin; 2,866 mg menadione; 22,046 mg pantothenic acid; 28,660 mg niacin; 6,614 mg thiamine; and 22 mg vitamin B12.
5Quantum 5000 (AB Vista, Plantation, FL) provided an estimated release of 0.14% available P.
6Quantum Blue 2G (AB Vista, Plantation, FL) provided an estimated release of 0.14% available P.
7Product 1 (Defusion; Provimi, Brooksville, OH) was included at the expense of corn.
8Sodium metabisulfite was included at the expense of corn.
Table 4. Deoxynivalenol analysis of experimental diets, Experiment 1 (as-fed basis)

<table>
<thead>
<tr>
<th>Item</th>
<th>Control</th>
<th>Product 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DON, ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 diets</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Phase 2 diets</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Phase 3 diets</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

1Multiple samples were collected from each diet throughout the study, homogenized, and submitted to North Dakota Grain Inspection Service, Inc. (Bucyrus, OH) for analysis of deoxynivalenol (DON) as determined by the RIDASCREEN FAST DON SC ELISA test kit (R-Biopharm AG, Darmstadt, Germany).

2Product 1 (Defusion; Provimi, Brooksville, OH).

Table 5. Deoxynivalenol analysis of experimental diets (as-fed basis), Experiment 2

<table>
<thead>
<tr>
<th>Product added, %</th>
<th>Control</th>
<th>Product 1</th>
<th>Product 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 to 7</td>
<td>---</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Day 7 to 21</td>
<td>---</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Day 21 to 28</td>
<td>---</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Day 28 to 35</td>
<td>---</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Day 35 to 42</td>
<td>---</td>
<td>---</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DON, ppm</th>
<th>Control</th>
<th>Product 1</th>
<th>Product 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 to 7</td>
<td>---</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Day 7 to 21</td>
<td>1.4</td>
<td>< 0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Day 21 to 28</td>
<td>1.1</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Day 28 to 35</td>
<td>1.5</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Day 35 to 42</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

1Multiple samples were collected from each diet throughout the study, homogenized, and submitted to North Dakota Grain Inspection Service, Inc. (Bucyrus, OH) for analysis of deoxynivalenol (DON) as determined by the ROSA DONQ2 Quantitative Test (Charms Sciences, Inc., Lawrence, MA).

2Product 1 (Defusion; Provimi, Brooksville, OH).

3Product 2 (NutriQuest, Mason City, IA).

4Missing sample.
Table 6. Deoxynivalenol analysis of experimental diets, Experiment 3 (as-fed basis)¹

<table>
<thead>
<tr>
<th>Product added, %</th>
<th>Control</th>
<th>Product 1²</th>
<th>Sodium metabisulfite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 to 14</td>
<td>---</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Day 14 to 21</td>
<td>---</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Day 21 to 28</td>
<td>---</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

DON, ppm

<table>
<thead>
<tr>
<th>Day</th>
<th>Control</th>
<th>Product 1²</th>
<th>Sodium metabisulfite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 to 14</td>
<td>< 0.5</td>
<td><0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Day 14 to 21</td>
<td>< 0.5</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Day 21 to 28</td>
<td>< 0.5</td>
<td><0.5</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

¹Multiple samples were collected from each diet throughout the study, homogenized, and submitted to North Dakota Grain Inspection Service, Inc. (Bucyrus, OH) for analysis of deoxynivalenol (DON) as determined by ROSA DONQ2 Quantitative Test (Charms Sciences, Inc., Lawrence, MA).
²Product 1 (Defusion; Provimi, Brooksville, OH).

Table 7. Effects of Product 1 on growth of nursery pigs, Experiment 1¹

<table>
<thead>
<tr>
<th>Item</th>
<th>Control</th>
<th>Product 1²</th>
<th>SEM</th>
<th>Probability, P <</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0 to 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADG, lb</td>
<td>.67</td>
<td>.81</td>
<td>0.010</td>
<td>0.001</td>
</tr>
<tr>
<td>ADFI, lb</td>
<td>.89</td>
<td>.98</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>F/G</td>
<td>1.33</td>
<td>1.21</td>
<td>0.167</td>
<td>0.001</td>
</tr>
<tr>
<td>Day 28 to 35 (post test)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADG, lb</td>
<td>1.42</td>
<td>1.21</td>
<td>0.029</td>
<td>0.001</td>
</tr>
<tr>
<td>ADFI, lb</td>
<td>1.88</td>
<td>1.80</td>
<td>0.025</td>
<td>0.002</td>
</tr>
<tr>
<td>F/G</td>
<td>1.32</td>
<td>1.49</td>
<td>0.085</td>
<td>0.001</td>
</tr>
<tr>
<td>Day 0 to 35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADG, lb</td>
<td>0.82</td>
<td>0.88</td>
<td>0.011</td>
<td>0.001</td>
</tr>
<tr>
<td>ADFI, lb</td>
<td>1.09</td>
<td>1.14</td>
<td>0.012</td>
<td>0.001</td>
</tr>
<tr>
<td>F/G</td>
<td>1.33</td>
<td>1.29</td>
<td>0.189</td>
<td>0.001</td>
</tr>
<tr>
<td>BW, lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 0</td>
<td>15.0</td>
<td>15.0</td>
<td>0.09</td>
<td>0.921</td>
</tr>
<tr>
<td>Day 28</td>
<td>34.0</td>
<td>37.7</td>
<td>0.35</td>
<td>0.001</td>
</tr>
<tr>
<td>Day 35</td>
<td>44.1</td>
<td>46.1</td>
<td>0.44</td>
<td>0.001</td>
</tr>
</tbody>
</table>

¹A total of 2,268 pigs (Line 337 × 1050; PIC) were used in a 35-d study. Pigs were weaned at approximately 22 days. Upon entry into the nursery, pigs were randomly sorted into 1 of 84 pens (42 pens of barrows, 42 pens of gilts), with 1 pen of gilts and 1 pen of barrows per fence line feeder. Pigs were blocked by BW and then randomly assigned to 1 of 2 dietary treatments in a completely randomized block design with 21 feeders per treatment. Experimental diets were fed from d 0 to 28 and a common diet was then fed from d 28 to 35.
²Product 1 (Defusion; Provimi, Brooksville, OH).
³Analyzed as Gain to Feed (G:F). Mean and SEM reported are 1/G:F values.
Table 8. Effects of added Product 1 or 2 on growth of nursery pigs, Experiment 2

<table>
<thead>
<tr>
<th>Day 0 to 7</th>
<th>Control</th>
<th>Product 1</th>
<th>Product 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>---</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Day 7 to 21	---	0.25	0.25
Day 21 to 28	---	0.25	0.25
Day 28 to 35	---	0.25	0.25
Day 35 to 42	---	0.25	0.25

Day 0 to 35			
ADG, lb	.75d	.84ab	.81c
ADFI, lb	.98e	1.08ab	1.05b
F/G4	1.30ab	1.28ab	1.31b

Day 35 to 42			
ADG, lb	1.61abcd	1.46d	1.72d
ADFI, lb	2.26abcd	2.15d	2.40d
F/G4	1.41	1.47	1.40

Day 0 to 42			
ADG, lb	.89d	.95bc	.99ab
ADFI, lb	1.19d	1.25bcd	1.31d
F/G4	1.34	1.32	1.32

BW, lb			
Day 0	13.7	13.7	13.7
Day 35	40.3d	43.4ab	42.1e
Day 42	51.8f	53.6de	55.6d

abcd Means within a row with different superscripts differ $P < 0.05$.

1 A total of 4,320 pigs (Line 337 × 1050; PIC) were used in a 35-d study. Pigs were weaned at approximately 22 days. Upon entry into the nursery, pigs were randomly sorted into 1 of 160 pens (80 pens of barrows, 80 pens of gilts), with 1 pen of gilts and 1 pen of barrows per fence line feeder. A pair of pens (feeders) were blocked by weight and then randomly assigned to 1 of 5 dietary treatments that were fed for 35 d in a completely randomized block design. Then on d 35, half of the pens receiving either Product 1 or 2 remained on those treatments and the other half were switched to the control diet. These combinations resulted in a total of 9 treatments. There were 16 replications (feeders) for all treatments from day 0 to 35 and 8 replications per treatment from day 35 to 42 for all treatments except for the control, which continued to have 16 replications per treatment.

2 Product 1 (Defusion; Provimi, Brooksville, OH).

3 Product 2 (NutriQuest, Mason City, IA).

4 Analyzed as Gain to Feed (G:F). Mean and SEM reported are 1/G:F values.
Table 9. Effects of added sodium metabisulfite or Product 1 on growth of nursery pigs, Experiment 3

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Product 1</th>
<th>Sodium metabisulfite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0 to 21</td>
<td>Day 21 to 28</td>
<td>Day 0 to 28</td>
</tr>
<tr>
<td>Product added, %</td>
<td>---</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Sodium metabisulfite</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>ADG, lb</td>
<td>1.01<sup>b</sup></td>
<td>1.06<sup>a</sup></td>
<td>0.95<sup>c</sup></td>
</tr>
<tr>
<td>ADFI, lb</td>
<td>1.30<sup>b</sup></td>
<td>1.34<sup>a</sup></td>
<td>1.31<sup>ab</sup></td>
</tr>
<tr>
<td>F/G</td>
<td>1.29<sup>b</sup></td>
<td>1.26<sup>ab</sup></td>
<td>1.37<sup>c</sup></td>
</tr>
<tr>
<td>ADG, lb</td>
<td>1.50<sup>c</sup></td>
<td>1.54<sup>b</sup></td>
<td>1.61<sup>a</sup></td>
</tr>
<tr>
<td>ADFI, lb</td>
<td>2.14<sup>b</sup></td>
<td>2.21<sup>a</sup></td>
<td>2.20<sup>ab</sup></td>
</tr>
<tr>
<td>F/G</td>
<td>1.43<sup>b</sup></td>
<td>1.43<sup>b</sup></td>
<td>1.37<sup>a</sup></td>
</tr>
<tr>
<td>ADG, lb</td>
<td>1.13<sup>b</sup></td>
<td>1.18<sup>a</sup></td>
<td>1.11<sup>b</sup></td>
</tr>
<tr>
<td>ADFI, lb</td>
<td>1.51<sup>b</sup></td>
<td>1.56<sup>a</sup></td>
<td>1.53<sup>ab</sup></td>
</tr>
<tr>
<td>F/G</td>
<td>1.34<sup>b</sup></td>
<td>1.32<sup>ab</sup></td>
<td>1.37<sup>c</sup></td>
</tr>
</tbody>
</table>

Means within a row with different superscripts differ P < 0.05.

1A total of 2,808 pigs (Line 337 × 1050; PIC) were used in a 28-d study. Pigs were weaned at approximately 22 days. Upon entry into the nursery, pigs were randomly sorted into 1 of 104 pens (52 pens of barrows, 52 pens of gilts), with 1 pen of gilts and 1 pen of barrows per fence line feeder. Pigs were blocked by BW and then randomly assigned to 1 of 4 dietary treatments in a completely randomized block design with 13 feeders per treatment. Experimental diets were fed from d 0 to 28.

2Product 1 (Defusion; Provimi Brooksville, OH).

3Analyzed as Gain to Feed (GF). Mean and SEM reported are 1/G:F values.