2019

Quality Grade Has No Effect on Top Sirloin Steaks Cooked to Multiple Degrees of Doneness

B. A. Olson
Kansas State University, brittanyolson@k-state.edu

E. A. Rice
Kansas State University, emilyrice@k-state.edu

J. M. Gonzalez
Kansas State University, johngonz@ksu.edu

J. L. Vipham
Kansas State University, jessiev@k-state.edu

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the [Beef Science Commons](https://newprairiepress.org/kaesrr) and the [Meat Science Commons](https://newprairiepress.org/kaesrr)

Recommended Citation

Olson, B. A.; Rice, E. A.; Gonzalez, J. M.; Vipham, J. L.; Chao, M. D.; Houser, T. A.; Boyle, E. A.; and O'Quinn, T. G. (2019) "Quality Grade Has No Effect on Top Sirloin Steaks Cooked to Multiple Degrees of Doneness," *Kansas Agricultural Experiment Station Research Reports*: Vol. 5: Iss. 1. https://doi.org/10.4148/2378-5977.7720

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2019 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Abstract

Objective: The objective of this study was to evaluate the effect of cooking top sirloin steaks from four quality grades to multiple degrees of doneness (rare, medium, well-done) on beef palatability traits.

Study Description: Beef top sirloin butts (n = 60; 15/quality grade) from four U.S. Department of Agriculture quality grades [Prime, Top Choice (Modest and Moderate marbling), Low Choice, and Select] were selected from a Midwest beef processor. Top butts were transported to the Kansas State University Meat Laboratory, fabricated into 1-in steaks, vacuum packaged, and aged for 28 days at 39.2°F. Following aging, steaks were frozen until cooked for consumer sensory analysis and Warner-Bratzler shear force.

The Bottom Line: These results indicate that quality grade has no effect on the eating quality of top sirloin steaks. Therefore, it is unnecessary for consumers, retailers, and foodservices to pay premium prices for higher quality top sirloin steaks, regardless of the degree of doneness they will be cooked to.

Keywords

consumer, degree of doneness, sirloin

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Authors

B. A. Olson, E. A. Rice, J. M. Gonzalez, J. L. Vipham, M. D. Chao, T. A. Houser, E. A. Boyle, and T. G. O’Quinn

This Meat Science article is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol5/iss1/4
Quality Grade Has No Effect on Top Sirloin Steaks Cooked to Multiple Degrees of Doneness

B.A. Olson, E.A. Rice, J.M. Gonzalez, J.L. Vipham, M.D. Chao, T.A. Houser, E.A.E. Boyle, and T.G. O’Quinn

Abstract

To evaluate the effect of cooking to multiple degrees of doneness (rare, medium, well-done) on top sirloin steak palatability, beef top sirloin butts (n = 60; 15/quality grade) from four U.S. Department of Agriculture quality grades [Prime, Top Choice (modest and moderate marbling), Low Choice, and Select] were selected from a Midwest beef processor. Top sirloin butts were transported to the Kansas State University Meat Laboratory, fabricated into 1-in steaks, vacuum packaged, and aged for 28 days at 39.2°F. Following aging, steaks were frozen, and then subjected to consumer sensory analysis and Warner-Bratzler shear force. No quality grade × degree of doneness interactions (P > 0.05) were found for consumer ratings of palatability traits. No differences (P > 0.05) were observed among quality grades for consumer ratings of tenderness, flavor, and overall like. Prime top sirloin steaks had higher (P < 0.05) juiciness ratings than all other quality grades except for Top Choice. No differences (P > 0.05) were observed for juiciness ratings between Top Choice, Low Choice, and Select steaks. Additionally, steaks cooked to rare were rated higher (P < 0.05) than medium and well-done steaks for all palatability traits evaluated. Steaks cooked to a medium degree of doneness had higher (P > 0.05) ratings for all traits than well-done.

Introduction

Top sirloin steaks are one of the most popular steaks purchased due to their lower price point (Schmidt et al., 2002). Restaurants typically offer top sirloin steaks as a less expensive steak option in comparison to more expensive cuts. However, sirloin steaks have been shown to be tougher and have varying palatability characteristics. To date, there have been no studies directly evaluating top sirloin steaks of multiple quality grades cooked to various degrees of doneness. Therefore, the objective of this study was to evaluate the effect of cooking top sirloin steaks from four quality grades to multiple degrees of doneness (rare, medium, well-done).

Experimental Procedures

Beef top sirloin butts (n = 60; 15/quality grade; Institutional Meat Purchasing Specifications #184; North American Meat Processors, 2014) were collected from
four U.S. Department of Agriculture quality grades [Prime, Top Choice (modest and
moderate marbling), Low Choice, and Select]. Top sirloin butts were fabricated into
1-in steaks and randomly assigned to one of three degrees of doneness: rare (140°F),
medium (160°F), or well-done (170°F). Steaks were vacuum packaged, aged for
28 days at 39.2°F, and then frozen until further analysis. Thawed steaks were cooked
on a clamshell grill (Griddler Deluxe, Cuisinart, East Windsor, NJ) to one of the
three preassigned degrees of doneness, with temperatures monitored using a probe
thermometer (Thermapen Mk4, ThermoWorks, American Fork, UT). Consumers
(n = 238) were fed six samples representing differences in degree of doneness and
quality grade. Consumers evaluated samples for tenderness, juiciness, flavor, and
overall like on continuous 100 point line scales, in individual sensory booths under low
intensity red incandescent lighting.

Additionally, panelists rated each evaluated trait as either unacceptable or acceptable,
and as well as rating each sample to one of four levels of quality: unsatisfactory, everyday
quality, better than everyday quality, and premium quality. Warner-Bratzler shear
force analysis was completed using the protocol described by American Meat Science
Association Meat Cookery and Sensory Guidelines (AMSA, 2015). Six cores (0.5-in
diameter) were taken parallel to the muscle fiber orientation and sheared perpendicular
to the muscle fiber orientation using an Instron (Model 5569, Instron Corp., Canton,
MA). Core measurements were averaged across all six cores per steak in pounds of peak
force.

Results and Discussion

Table 1 contains least squares means for consumer palatability ratings. No quality
grade × degree of doneness interactions (P > 0.05) were found for consumer ratings
of palatability traits. For quality grade, no differences (P > 0.05) were observed for
consumer ratings of tenderness, flavor, and overall like; however, there was a significant
effect (P = 0.02) on juiciness. Prime top sirloin steaks had higher (P < 0.05) juiciness
ratings than all other quality grades except for Top Choice. Additionally, there were no
differences (P > 0.05) in juiciness ratings among Top Choice, Low Choice, and Select
steaks. For degree of doneness, steaks cooked to rare were rated higher (P < 0.05) than
medium and well-done steaks for all palatability traits evaluated. Steaks cooked to a
medium degree of doneness had higher (P > 0.05) ratings than well-done steaks.

No quality grade × degree of doneness interactions (P > 0.05) were observed for
the percentage of top sirloin steaks rated acceptable for tenderness, juiciness, flavor, and
overall like (Table 2). There were no differences (P > 0.05) among quality treatments
for the percentage of steaks rated acceptable for all palatability traits evaluated.
Consistent with consumer ratings, rare samples had the greatest (P < 0.05) percentage
of steaks rated acceptable for all palatability traits, followed by medium steaks having a
higher (P < 0.05) percentage of samples rated acceptable than well-done steaks.

No (P > 0.05) quality grade × degree of doneness interactions or quality grade effects
were found for the percentage of steaks perceived at quality levels of unsatisfactory,
better than everyday quality, and premium quality (data not shown). For degree of
doneness, steaks cooked to rare had a higher (P < 0.05) percentage of steaks rated as
better than everyday quality and premium quality compared to medium and well-done

Kansas State University Agricultural Experiment Station and Cooperative Extension Service
steaks. Conversely, the percentage of well-done steaks identified as unsatisfactory was greater \((P < 0.05)\) than medium and rare steaks. There was a quality grade \(\times\) degree of doneness interaction \((P < 0.05)\) for the percentage of steaks perceived as everyday quality. When cooked to a medium degree of doneness, Low Choice and Select steaks were perceived as everyday quality more often \((P < 0.05)\) than Top Choice steaks, but were not different \((P > 0.05)\) than Prime steaks. However, steaks cooked to rare and well-done showed no differences \((P > 0.05)\) among quality grades for the percentage of samples identified as everyday quality.

There were no quality grade \(\times\) degree of doneness interactions \((P > 0.05)\) for Warner-Bratzler shear force (data not shown). Prime steaks had a lower \((P < 0.05)\) Warner-Bratzler shear force value than Low Choice and Select steaks, but were similar \((P > 0.05)\) to Top Choice steaks. Additionally, Top Choice, Low Choice, and Select steaks were all similar \((P > 0.05)\) in Warner-Bratzler shear force values. For degree of doneness, rare steaks had the lowest \((P < 0.05)\) Warner-Bratzler shear force value. Steaks cooked to a medium degree of doneness had higher \((P < 0.05)\) Warner-Bratzler shear force values than well-done steaks.

Implications

These results indicate that quality grade has no effect on the eating quality of top sirloin steaks. Therefore, it is unnecessary for consumers, retailers, and foodservices to pay premium prices for higher quality top sirloin steaks, regardless of the degree of doneness they will be cooked to.

References

Table 1. Least squares means for consumer (n = 238) ratings of the palatability traits of four quality grades cooked to three degrees of doneness

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Juiciness</th>
<th>Tenderness</th>
<th>Flavor</th>
<th>Overall like</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prime</td>
<td>63.3<sup>a</sup></td>
<td>60.5</td>
<td>59.7</td>
<td>60.3</td>
</tr>
<tr>
<td>Top Choice<sup>3</sup></td>
<td>61.5<sup>ab</sup></td>
<td>60.5</td>
<td>55.7</td>
<td>58.2</td>
</tr>
<tr>
<td>Low Choice</td>
<td>57.7<sup>b</sup></td>
<td>59.9</td>
<td>55.1</td>
<td>56.5</td>
</tr>
<tr>
<td>Select</td>
<td>56.5<sup>b</sup></td>
<td>56.6</td>
<td>54.1</td>
<td>54.3</td>
</tr>
<tr>
<td>SEM<sup>3</sup></td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td><sup>P</sup>–value</td>
<td>0.02</td>
<td>0.41</td>
<td>0.09</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Degree of doneness

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Juiciness</th>
<th>Tenderness</th>
<th>Flavor</th>
<th>Overall like</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rare (140°F)</td>
<td>75.8<sup>a</sup></td>
<td>71.6<sup>a</sup></td>
<td>63.8<sup>a</sup></td>
<td>67.3<sup>a</sup></td>
</tr>
<tr>
<td>Medium (160°F)</td>
<td>58.3<sup>b</sup></td>
<td>57.8<sup>b</sup></td>
<td>56.2<sup>b</sup></td>
<td>56.2<sup>b</sup></td>
</tr>
<tr>
<td>Well-done (170°F)</td>
<td>45.4<sup>c</sup></td>
<td>48.8<sup>c</sup></td>
<td>48.5<sup>c</sup></td>
<td>48.5<sup>c</sup></td>
</tr>
<tr>
<td>SEM<sup>3</sup></td>
<td>1.7</td>
<td>1.5</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td><sup>P</sup>–value</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Quality grade × degree of doneness

| ^P–value | 0.78 | 0.99 | 0.96 | 0.94 |

^{ab} Least squares means within the same main effect (quality grade or degree of doneness) without a common superscript differ (^P < 0.05).

¹Sensory scores: 0 = extremely dry/tough/dislike; 50 = neither dry nor juicy, neither tough nor tender, neither like nor dislike; 100 = extremely juicy/tender/like extremely.

²U.S. Department of Agriculture marbling score of modest⁰⁰ - moderate¹⁰⁰.

³SEM (largest) = standard error of the least squares means.
Table 2. Percentage of top sirloin steaks of four quality grades cooked to three degrees of doneness rated as acceptable for juiciness, tenderness, flavor, and overall liking by consumers (n = 238)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Juiciness</th>
<th>Tenderness</th>
<th>Flavor</th>
<th>Overall like</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prime</td>
<td>90.5</td>
<td>88.4</td>
<td>83.1</td>
<td>87.2</td>
</tr>
<tr>
<td>Top Choice(^1)</td>
<td>87.1</td>
<td>86.2</td>
<td>77.7</td>
<td>80.0</td>
</tr>
<tr>
<td>Low Choice</td>
<td>87.5</td>
<td>88.2</td>
<td>80.1</td>
<td>84.0</td>
</tr>
<tr>
<td>Select</td>
<td>80.5</td>
<td>86.0</td>
<td>75.9</td>
<td>78.8</td>
</tr>
<tr>
<td>SEM(^2)</td>
<td>3.5</td>
<td>2.7</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>P – value</td>
<td>0.10</td>
<td>0.85</td>
<td>0.38</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Degree of doneness				
Rare (140°F)	96.1\(^a\)	94.5\(^a\)	86.5\(^a\)	91.1\(^a\)
Medium (160°F)	83.9\(^b\)	83.8\(^b\)	78.3\(^b\)	80.5\(^b\)
Well-done (170°F)	68.8\(^c\)	78.1\(^c\)	71.0\(^c\)	72.4\(^c\)
SEM\(^2\)	2.8	2.3	2.5	2.5
P – value	< 0.01	< 0.01	< 0.01	< 0.01

Quality grade × degree of doneness

| **P – value** | 0.50 | 0.55 | 0.05 | 0.75 |

\(^{a,b}\)Least squares means within the same main effect (quality grade or degree of doneness) without a common superscript differ (P < 0.05).

\(^1\)U.S. Department of Agriculture marbling score of modest\(^0\) - moderate\(^100\).

\(^2\)SEM (largest) = Standard error of the least squares means.