Including Legumes in Bermudagrass Pastures

J. L. Moyer
Kansas State University, jmoyer@ksu.edu

L. W. Lomas
Kansas State University, llomas@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons, and the Beef Science Commons

Recommended Citation

Moyer, J. L. and Lomas, L. W. (2020) "Including Legumes in Bermudagrass Pastures," *Kansas Agricultural Experiment Station Research Reports*: Vol. 6: Iss. 4. https://doi.org/10.4148/2378-5977.7904

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2020 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Including Legumes in Bermudagrass Pastures

Abstract
Bermudagrass is a productive forage species when intensively managed. However, it has periods of dormancy and requires proper management to maintain forage quality. Legumes in a bermudagrass sward could improve forage quality and reduce fertilizer usage; however, legumes are difficult to establish and maintain with the competitive grass. Clovers can maintain survival once established in bermudagrass sod, and may be productive enough to substitute for some N fertilization. This study was designed to compare dry cow performance on a bermudagrass pasture system that included ladino and crimson clovers (Legume) vs. bermudagrass alone (Nitrogen). Use of legumes in wheat-bermudagrass pastures did not affect summer cow gains in 2019, but did reduce the quantity of nitrogen fertilizer required.

Keywords
bermudagrass, grazing, legumes, ladino clover, crimson clover, interseeding

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Including Legumes in Bermudagrass Pastures

J.L. Moyer and L.W. Lomas

Summary
Use of legumes in wheat-bermudagrass pastures did not affect summer cow gains in 2019, but did reduce the quantity of nitrogen fertilizer required.

Introduction
Bermudagrass is a productive forage species when intensively managed. However, it has periods of dormancy and requires proper management to maintain forage quality. Legumes in a bermudagrass sward could improve forage quality and reduce fertilizer usage; however, legumes are difficult to establish and maintain with the competitive grass. Clovers can maintain survival once established in bermudagrass sod, and may be productive enough to substitute for some N fertilization. This study was designed to compare dry cow performance on a bermudagrass pasture system that included ladino and crimson clovers (Legume) vs. bermudagrass alone (Nitrogen).

Experimental Procedures
Eight 5-acre ‘Hardie’ bermudagrass pastures at the Mound Valley Unit of the Kansas State University Southeast Research and Extension Center (Parsons silt-loam soil) were assigned to Legume or Nitrogen treatments in a completely randomized design with four replications. All pastures were interseeded with 100 lb/a of ‘Everest’ wheat on September 25, 2018. Legume pastures that had been previously interseeded with ‘Will’ ladino clover were interseeded with 21 lb/a of crimson clover using a no-till drill on September 25, 2018. Nitrogen pastures were fertilized with 50 lb/a of nitrogen on January 30 and May 7, 2019, and all pastures received 50-30-30 of N-P$_2$O$_5$-K$_2$O on July 13, 2019.

Thirty-two pregnant fall-calving cows of predominantly Angus breeding were weighed on consecutive days and assigned randomly by weight to pastures on March 29, 2019. Final cow weights were taken on consecutive days before removal from the pastures on August 15, 2019 (139 days).

Results and Discussion
Cow performance data are presented in Table 1. Cow gains and gain/a for the Nitrogen and Legume treatments were similar ($P > 0.05$).
Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. Persons using such products assume responsibility for their use in accordance with current label directions of the manufacturer.

Table 1. Performance of cows grazing wheat-bermudagrass pastures interseeded with wheat and fertilized with nitrogen or interseeded with legumes, Mound Valley Unit, Kansas State University Southeast Research and Extension Center, 2019

<table>
<thead>
<tr>
<th>Item</th>
<th>Management system</th>
<th>Management system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cows</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Number of days</td>
<td>139</td>
<td>139</td>
</tr>
<tr>
<td>Stocking rate, cows/a</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Cow initial weight, lb</td>
<td>1223</td>
<td>1224</td>
</tr>
<tr>
<td>Cow final weight, lb</td>
<td>1576</td>
<td>1524</td>
</tr>
<tr>
<td>Cow gain, lb</td>
<td>353</td>
<td>300</td>
</tr>
<tr>
<td>Cow daily gain, lb</td>
<td>2.54</td>
<td>2.16</td>
</tr>
<tr>
<td>Cow gain, lb/a</td>
<td>283</td>
<td>240</td>
</tr>
</tbody>
</table>

Means within a row followed by the same letter do not differ (P < 0.05).