Swine Day Report Foreword and Acknowledgments

R. D. Goodband
Department of Animal Science and Industry, Kansas State University, goodband@ksu.edu

J. T. Gebhardt
Kansas State University, Manhattan, jgebhardt@k-state.edu

M. D. Tokach
Department of Animal Science and Industry, Kansas State University, mtokach@ksu.edu

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2020 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Swine Day Report Foreword and Acknowledgments

Cover Page Footnote
Appreciation is expressed to the organizations for assisting with swine research at Kansas State University.

Authors

This swine day endnotes is available in Kansas Agricultural Experiment Station Research Reports:
https://newprairiepress.org/kaesrr/vol6/iss10/36
Foreword

It is with great pleasure that we present the 2020 Swine Industry Day Report of Progress. This report contains updates and summaries of applied and basic research conducted at Kansas State University during the past year. We hope that the information will be of benefit as we attempt to meet the needs of the Kansas swine industry.

2020 Swine Day Report of Progress Editors
Bob Goodband
Jordan Gebhardt
Mike Tokach
Joel DeRouchey
Jason Woodworth
Standard Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG</td>
<td>average daily gain</td>
</tr>
<tr>
<td>ADF</td>
<td>acid detergent fiber</td>
</tr>
<tr>
<td>ADFI</td>
<td>average daily feed intake</td>
</tr>
<tr>
<td>AI</td>
<td>artificial insemination</td>
</tr>
<tr>
<td>avg</td>
<td>average</td>
</tr>
<tr>
<td>bu</td>
<td>bushel</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter(s)</td>
</tr>
<tr>
<td>CP</td>
<td>crude protein</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>cwt</td>
<td>100 lb</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>DE</td>
<td>digestible energy</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>dry matter intake</td>
</tr>
<tr>
<td>F/G</td>
<td>feed efficiency</td>
</tr>
<tr>
<td>ft</td>
<td>foot (feet)</td>
</tr>
<tr>
<td>ft²</td>
<td>square foot(eyes)</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>μg</td>
<td>microgram(s), .001 mg</td>
</tr>
<tr>
<td>gal</td>
<td>gallon(s)</td>
</tr>
<tr>
<td>GE</td>
<td>gross energy</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HCW</td>
<td>hot carcass weight</td>
</tr>
<tr>
<td>in</td>
<td>inch(es)</td>
</tr>
<tr>
<td>IU</td>
<td>international unit(s)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalorie(s)</td>
</tr>
<tr>
<td>kWh</td>
<td>kilowatt hour(s)</td>
</tr>
<tr>
<td>lb</td>
<td>pound(s)</td>
</tr>
<tr>
<td>Mcal</td>
<td>megacalorie(s)</td>
</tr>
<tr>
<td>ME</td>
<td>metabolizable energy</td>
</tr>
<tr>
<td>mEq</td>
<td>milliequivalent(s)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>mL</td>
<td>cc (cubic centimeters)</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter(s)</td>
</tr>
<tr>
<td>mo</td>
<td>month(s)</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acid</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>NE</td>
<td>net energy</td>
</tr>
<tr>
<td>NDF</td>
<td>neutral detergent fiber</td>
</tr>
<tr>
<td>NFE</td>
<td>nitrogen-free extract</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram(s), .001 Fg</td>
</tr>
<tr>
<td>no.</td>
<td>number</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acid</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>s</td>
<td>second(s)</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SEW</td>
<td>segregated early weaning</td>
</tr>
<tr>
<td>SFA</td>
<td>saturated fatty acid</td>
</tr>
<tr>
<td>UFA</td>
<td>unsaturated fatty acid</td>
</tr>
<tr>
<td>wk</td>
<td>week(s)</td>
</tr>
<tr>
<td>wt</td>
<td>weight(s)</td>
</tr>
<tr>
<td>yr</td>
<td>year(s)</td>
</tr>
</tbody>
</table>
K-State Vitamin and Trace Mineral Premixes

Diets listed in this report contain the following vitamin and trace mineral premixes unless otherwise specified.

Trace mineral premix: Each pound of premix contains 10 g Mn, 33 g Fe, 33 g Zn, 5 g Cu, 90 mg I, and 90 mg Se.

Vitamin premix: Each pound of premix contains 750,000 IU vitamin A, 300,000 IU vitamin D3, 8,000 mg vitamin E (dl-alpha-tocopherol acetate or 4,000 mg d-alpha-tocopherol acetate), 600 mg menadione, 1,500 mg riboflavin, 5,000 mg pantothenic acid, 9,000 mg niacin, and 6 mg vitamin B12.

Sow add pack: Each pound of premix contains 750,000 IU vitamin A, 100,000 mg choline, 40 mg biotin, 400 mg folic acid, 180 mg pyridoxine, 4,000 mg vitamin E (dl-alpha-tocopherol acetate or 2,000 mg d-alpha-tocopherol acetate), 9,000 mg L-carnitine, and 36 mg Cr.

Note
Some of the research reported here was carried out under special U.S. Food and Drug Administration (FDA) clearances that apply only to investigational uses at approved research institutions. Materials that require FDA clearances may be used in the field only at the levels and for the use specified in that clearance.
Biological Variability and Chances of Error

Variability among individual animals in an experiment leads to problems in interpreting the results. Animals on treatment X may have higher average daily gains than those on treatment Y, but variability within treatments may indicate that the differences in production between X and Y were not the result of the treatment alone. Statistical analysis allows us to calculate the probability that such differences are from treatment rather than from chance.

In some of the articles herein, you will see the notation “$P < 0.05$.” That means the probability of the differences resulting from chance is less than 5%. If two averages are said to be “significantly different,” the probability is less than 5% that the difference is from chance, or the probability exceeds 95% that the difference resulted from the treatments applied.

Some papers report correlations or measures of the relationship between traits. The relationship may be positive (both traits tend to get larger or smaller together) or negative (as one trait gets larger, the other gets smaller). A perfect correlation is one (+1 or -1). If there is no relationship, the correlation is zero.

In other papers, you may see an average given as 2.5 ± 0.1. The 2.5 is the average; 0.1 is the “standard error.” The standard error is calculated to be 68% certain that the real average (with unlimited number of animals) would fall within one standard error from the average, in this case between 2.4 and 2.6.

Using many animals per treatment, replicating treatments several times, and using uniform animals increase the probability of finding real differences when they exist. Statistical analysis allows more valid interpretation of the results, regardless of the number of animals. In all the research reported herein, statistical analyses are included to increase the confidence you can place in the results.
Index of Key Words

acidification
administration
African swine fever virus
amino acid
amino acid digestibility
animal welfare
antibiotics
AviPlus
branch chain amino acids
castration
cellulose
classical swine fever
CO_2
surgical laser
compensatory growth
conditioning temperature
copper
corn
corn protein
crude protein
crystalline amino acids
CSF
culture approach
distillers dried grains
with solubles
E. coli serogroups
environmental contamination
farrowing duration
fecal dry matter
feed mill
feed safety
fiber
finisher pigs
formic acid
gleptoferron
growth
growth performance
growth rate
hemoglobin
high amylase
high amylase corn
high protein distillers dried grains
insoluble fiber
iron
isoleucine
KNB-E2
lactation
late finishing
lignosulfonate
lysine
maillard reaction
manganese
manganese hydroxychloride
meal
moisture content
mortality
nursery pigs
pain
particle size
pellet
pellet die thickness
pellet quality
pelleting
pellets
phosphorus
phytase
phytase activity
phytase stability
pig
piglet
piglet performance
pigs
Porcine Epidemic Diarrhea Virus
Porcine Reproductive and Respiratory Syndrome Virus
power calculation
premix stability
protein source
PRRS
real-time PCR
reducing sugars
refinement
release value
sample preparation
sample size
sample storage
slow-down program
steam conditioning
stomach ulcers
subunit vaccine
survival
swine
timing
transition sow
tryptophan
valine
vitamin stability
vitamin storage
wheat bran
yellow dent corn
zinc
zinc acidification
zinc oxide
Acknowledgments

Appreciation is expressed to these organizations for assisting with swine research at Kansas State University.

Adisseo, Alpharetta, GA
Agrivida, Woburn, MA
Ajinomoto Heartland LLC, Chicago, IL
Asimetrix, Inc., Durham, NC
Cargill, Wayzata, MN
Ceva Bioimmune, Lenexa, KS
CJ America, Downers Grove, IL
DNA Genetics, Columbus, NE
DSM Nutritional Products, Parsippany, NJ
Feedlogic Corporation, Willmar, MN
Feed One Co., Ltd., Yokohama, Japan
Foundation for Food & Agriculture Research, Washington, D.C.
Havermamp Brothers, Bern, KS
Roy and Linda Henry, Longford, KS
Holden Farms, Northfield, MN
Hord Family Farms, Bucyrus, OH
Hubbard Feeds, Mankato, MN
ICM, Inc., Colwich, KS
International Ingredient Corporation, St. Louis, MO
Iowa Select Farms, Inc., Iowa Falls, IA
J. Rettenmaier USA, Schoolcraft, MI
JBS Live Pork, Greely, CO
JYGA Technologies, St. Nicolas, Quebec, Canada
Kansas Pork Association, Manhattan, KS
Kansas Swine Alliance, Abilene, KS
Lesaffre, Milwaukee, WI
Livestock and Meat Industry Council, Manhattan, KS
Micronutrients, Indianapolis, IN
National Pork Board, Des Moines, IA
Natural Foods Holdings, Sioux City, IA
Gene Nemechek Family, Wilson, NC
New Fashion Pork, Jackson, MN
New Horizon Farms, Pipestone, MN
Origination, Inc., Maplewood, MN
PIC USA, Hendersonville, TN
Pipestone Grow-Finish, Pipestone, MN
Provimi North America, Brookville, OH
Purco, Edgerton, MN
SVC Research, LLC, St. Peter, MN
Swine Health Information Center, Ames, IA
Syngenta Seeds, Inc., Minnetonka, MN
Bob and Karen Thaler, Brookings, SD
Tech Mix, LLC, Stewart, MN
Triumph Foods, St. Joseph, MO
U.S. Soybean Board, Chesterfield, MO
USDA National Institute of Food and Agriculture, Washington, D.C.
Vetagro, Chicago, IL

We especially appreciate the assistance and dedication of Kansas State University employees Duane Baughman, Frank Jennings, Mark Nelson, Chance Fiehler, Caitlin Evans, Gage Nichols, Courtney Truelock, Haley Wecker, and Theresa Rathbun.

Appreciation is also expressed to: Allan Morris, Heath Houselog, Marty Heintz, Craig Steck, Whitney Adler, and Bob Taubert, New Horizon Farms (Pipestone, MN) for their dedicated support.

Appreciation is expressed to Triumph Foods LLC (St. Joseph, MO), and Jerry Lehenbauer, Brad Knadler, Dr. Emily Arkfeld, and Dr. Barry Wisemann for technical assistance.

Swine Industry Day Committee

Joel DeRouchey
Jordan Gebhardt
Bob Goodband
Mike Tokach
Jason Woodworth
The Livestock and Meat Industry Council, Inc.

The Livestock and Meat Industry Council, Inc. (LMIC) is a nonprofit charitable organization supporting animal agriculture research, teaching, and education. This is accomplished through the support of individuals and businesses that make LMIC a part of their charitable giving.

Tax-deductible contributions can be made through gifts of cash, appreciated securities, real estate, life insurance, charitable remainder trusts, and bequests as well as many other forms of planned giving. LMIC can also receive gifts of livestock, machinery, or equipment. These types of gifts, known as gifts-in-kind, allow the donor to be eligible for a tax benefit based on the appraised value of the gift.

Since its inception in 1970, LMIC has provided student scholarships, research assistance, capital improvements, land, buildings, and equipment to support students, faculty, and the industry of animal agriculture. If you would like to be a part of this mission or would like additional information, please contact the Livestock and Meat Industry Council/Animal Sciences and Industry, Weber Hall, Manhattan, Kansas 66506 or call 785-532-1227.

LMIC Board Members
Gene Barrett Roy Henry Stanton O’Neil
David Clawson Virgil Huseman Rich Porter
Doug Deets Justin Janssen Jim Riemann
Mark Gardiner Jerry Kuckelman Randall Spare
Mark Gratny Debbie Lyons-Blythe Tom Toll
Ken Grecian Steve Mangan Mark Young
Kim Harms Bill Miller
Frank Harper Lisa Moser

Royal Board Members
Dell Allen Steven Hunt Tom Perrier
Kyle Bauer Steve Irsk Harland Priddle
Jerry Bohn Larry Jones Lee Reeve
Galen Fink Kenny Knight Don Smith
Randy Fisher Mark Knight Ken Stielow
Craig Good Pat Koons Mikel Stout
Lyle Gray Kelly Lechtenberg Kathleen Strunk
Sam Hands Jan Lyons Duane Walker
Bernie Hansen Gina Miller Warren Weibert
Greg Henderson Andrew Murphy

Kansas State University Agricultural Experiment Station and Cooperative Extension Service