Relationships Among Maternal Traits and Sale Prices of Red Angus Bulls Sold at Auction From 2017 Through 2019

M. J. Smith

Kansas State University, maggie35@k-state.edu

K. E. Fike

Kansas State University, karol@ksu.edu

M. E. King

Kansas State University, Manhattan, kingme@k-state.edu

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Beef Science Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2021 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Relationships Among Maternal Traits and Sale Prices of Red Angus Bulls Sold at Auction From 2017 Through 2019

Authors
M. J. Smith, K. E. Fike, M. E. King, E. D. McCabe, G. M. Rogers, and K. G. Odde

This beef cattle management is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol7/iss1/9
Relationships Among Maternal Traits and Sale Prices of Red Angus Bulls Sold at Auction From 2017 Through 2019

M.J. Smith, K.E. Fike, M.E. King, E.D. McCabe, G.M. Rogers, and K.G. Odde

Abstract
The objective of this study was to evaluate the influence of maternal traits in the form of selection indices and expected progeny differences on the sale price of Red Angus bulls sold at auction from 2017 through 2019 across the United States. Various factors were discovered to be of significance through statistical models. Through the construction of descriptive figures, sale price was found to be positively associated with several maternal traits. However, relatively low R^2 values indicate that only a small amount of the price variation was accounted for, suggesting buyers are using additional information that we are not able to fully characterize.

Introduction
The selection of a beef bull is an important choice, as a herd sire provides more than 80% of genetic merit and change to a herd (Ishmael, 2017). In an industry with rapid change in producer priorities and preferences, the utilization of various management strategies and selection tools has been crucial in ensuring a continued level of economic productivity (Hersom et al., 2011). Numerous categories of information are provided to potential buyers through various auction channels. Information ranges from values concerning expected progeny differences, selection indices, and phenotypic data and characteristics. Different information provided to buyers during the time of sale may have the potential to alter the price a buyer may be willing to offer for the bull, depending on the goals and priorities of the specific producer (Dhuyvetter et al., 1996).

Experimental Procedures
Information describing various factors about Red Angus bulls marketed and sold nationwide through auctions were obtained from the Red Angus Association of America (Commerce City, CO) in an electronic format. These data were available for all Red Angus bulls offered for sale in auctions during the spring and fall of 2017 and 2018, and the spring of 2019 sale seasons. Quantifiable factors came in the form of two selection indices and fourteen expected progeny differences, encompassing a variety of maternal and terminal traits.

1 Grassy Ridge Consulting, Aledo, TX.
Two separate multiple regression models were developed using backward selection procedures to examine the effect of genetic factors in the form of selection indices and expected progeny differences on the sale price of Red Angus bulls. Maternal traits included with the selection index model came in the form of the HerdBuilder Index. Maternal expected progeny difference traits included calving ease direct expected progeny difference, milk expected progeny difference, maintenance energy expected progeny difference, heifer pregnancy expected progeny difference, calving ease maternal expected progeny difference, and stayability expected progeny difference. Relationships between sale price and these maternal genetic parameters were further examined by evaluating trends in selection indices and expected progeny differences across sale price categories. Red Angus bulls were categorized into eight groups by respective sale price. The unadjusted, average values of these selection indices and expected progeny differences were calculated across price categories to investigate the trend of these various genetic factors relative to sale price.

Results and Discussion

Data were collected for 21,362 Red Angus bulls offered for sale in auctions from 2017 through 2019. Within the selection index model, the HerdBuilder Index ($P < 0.05$) was found to be a significant factor positively influencing bull sale price. Regression coefficients from the model indicate that a single unit increase in HerdBuilder Index increased auction price by $5.08 (Table 1).

Within the expected progeny difference model, various maternal traits significantly influenced bull sale price. Those factors were: calving ease direct expected progeny difference ($P < 0.05$), maintenance energy expected progeny difference ($P < 0.05$), heifer pregnancy expected progeny difference ($P < 0.05$), calving ease maternal expected progeny difference ($P < 0.05$), and stayability expected progeny difference ($P < 0.05$) (Table 2). Milk expected progeny difference ($P > 0.05$) did not affect the sale price of Red Angus bulls and was excluded from the final model. Positive relationships with sale price were discovered for the variables of calving ease direct expected progeny difference, heifer pregnancy expected progeny difference, and stayability expected progeny difference, while maintenance energy expected progeny difference and calving ease maternal expected progeny difference were found to be inversely associated with bull sale price. While selection indices and expected progeny differences were found to be significant through statistical models, relatively low R^2 values were found across both models (Table 1 and Table 2), indicating a small amount of variation in auction price was explained by the associated genetic parameters. This suggests that producers are using other factors not captured within the data, such as physical attributes, management and marketing factors, and breeder reputation when making selection decisions.

When summarizing descriptive data for maternal traits across bull sale price groups, positive trends were discovered for the HerdBuilder Index (Figure 1), calving ease direct expected progeny difference (Figure 2), heifer pregnancy expected progeny difference (Figure 3), and stayability expected progeny difference (Figure 4). Relatively flat trends were observed for milk expected progeny difference (Figure 5), maintenance energy...
expected progeny difference (Figure 6), and calving ease maternal expected progeny difference (Figure 7).

Implications
Relatively low R^2 values suggest that bull buyers are utilizing other informational components not captured within the data when making investment decisions. Knowledge of physical attributes, marketing strategies, and breeder reputation are likely influencing buyers, and may explain additional variation in the sale price of Red Angus bulls. Continued research on maternal traits influencing the sale price of beef bulls across the United States may prove advantageous to producers.

References

Table 1. Maternal traits in the form of selection indices affecting the sale price of Red Angus bulls sold at auction from 2017 through 2019

<table>
<thead>
<tr>
<th>Factor</th>
<th>Estimate</th>
<th>Standard error</th>
<th>T-value of factor</th>
<th>P-value of factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-12,800.00</td>
<td>521.30</td>
<td>-24.55</td>
<td><0.0001</td>
</tr>
<tr>
<td>HerdBuilder Index</td>
<td>5.08</td>
<td>0.60</td>
<td>8.61</td>
<td><0.0001</td>
</tr>
<tr>
<td>Number of observations</td>
<td>21,362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Maternal traits in the form of expected progeny differences affecting the sale price of Red Angus bulls sold at auction from 2017 through 2019

<table>
<thead>
<tr>
<th>Factor expected progeny difference</th>
<th>Estimate</th>
<th>Standard error</th>
<th>T-value</th>
<th>P-value of factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>627.10</td>
<td>164.24</td>
<td>3.82</td>
<td><0.01</td>
</tr>
<tr>
<td>Calving ease direct</td>
<td>57.09</td>
<td>9.91</td>
<td>5.76</td>
<td><0.0001</td>
</tr>
<tr>
<td>Maintenance energy</td>
<td>-62.53</td>
<td>7.19</td>
<td>-8.70</td>
<td><0.0001</td>
</tr>
<tr>
<td>Heifer pregnancy</td>
<td>51.62</td>
<td>9.82</td>
<td>5.26</td>
<td><0.0001</td>
</tr>
<tr>
<td>Calving ease maternal</td>
<td>-22.79</td>
<td>11.58</td>
<td>-1.97</td>
<td><0.05</td>
</tr>
<tr>
<td>Stayability</td>
<td>20.66</td>
<td>8.75</td>
<td>2.36</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Number of observations: 21,362

R2: 0.07

Adjusted R2: 0.07

Figure 1. HerdBuilder score by sale price category.

Figure 2. Calving ease direct expected progeny difference by sale price category.
Figure 3. Heifer pregnancy expected progeny difference by sale price category.

Figure 4. Stayability expected progeny difference by sale price category.
Figure 5. Milk expected progeny difference by sale price category.

Figure 6. Maintenance energy expected progeny difference by sale price category.
Figure 7. Calving ease maternal expected progeny difference by sale price category.