Assessment of Soy-Based Imports into the US and Associated Foreign Animal Disease Status

Allison K. Blomme
Kansas State University, ablomme@k-state.edu

Cassandra K. Jones
Kansas State University, jonesc@k-state.edu

Jordan T. Gebhardt
Kansas State University, jgebhardt@k-state.edu

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2021 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Assessment of Soy-Based Imports into the US and Associated Foreign Animal Disease Status

Abstract
Soy-based products are known to pose a viable risk to US swine herds because of their ability to harbor and transmit virus. This study evaluated soy imports into the US as a whole and from foreign animal disease positive (FAD+) countries to determine which products are being imported in the highest quantities and observe potential trends in imports from FAD+ countries. Import data were accessed through the United States International Trade Commission website (USITC DataWeb) and summarized using R (version 4.0.2, R core team, Vienna, Austria). Twenty-one different Harmonized Tariff Schedule (HTS) codes were queried to determine quantities (US tons, T) and breakdown of different soy product types being imported into the US from 2015 to 2020. A total of 78 different countries exported soy products to the US in 2019 and 2020, with top contributors being Canada (602,377 T and 530,759 T, respectively), India (438,563 T and 474,678 T, respectively), and Argentina (134,610 T and 87,602 T, respectively). In 2020, soy oilcake (641,846 T) was imported in the largest quantities, followed by organic soybeans (297,838 T) and soy oil (148,190 T). Of the 78 countries, 46 had cases of FAD reported through the World Organization for Animal Health (OIE) World Animal Health Information Database (WAHIS). Top exporters of soy products to the US from FAD+ countries in 2019 and 2020 were India (438,563 T and 474,678 T, respectively), Argentina (134,610 T in 2019), and Ukraine (44,415 T and 62,162 T, respectively). A system to monitor the sourcing of these products into the US and the end usage would allow for a greater understanding of the risk of these products to domestic swine herds.

Keywords
soy imports, transboundary shipping, foreign animal disease, organic soybeans, soybean meal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Cover Page Footnote
Appreciation is expressed to Swine Health Information Center in Ames, IA, for partial funding of this project.

Authors
Allison K. Blomme, Cassandra K. Jones, Jordan T. Gebhardt, Jason C. Woodworth, and Chad B. Paulk

This section 4. feed safety research is available in Kansas Agricultural Experiment Station Research Reports:
https://newprairiepress.org/kaesrr/vol7/iss11/50
Assessment of Soy-Based Imports into the US and Associated Foreign Animal Disease Status

Allison K. Blomme, Cassandra K. Jones, Jordan T. Gebhardt, Jason C. Woodworth, and Chad B. Paulk

Summary
Soy-based products are known to pose a viable risk to US swine herds because of their ability to harbor and transmit virus. This study evaluated soy imports into the US as a whole and from foreign animal disease positive (FAD+) countries to determine which products are being imported in the highest quantities and observe potential trends in imports from FAD+ countries. Import data were accessed through the United States International Trade Commission website (USITC DataWeb) and summarized using R (version 4.0.2, R core team, Vienna, Austria). Twenty-one different Harmonized Tariff Schedule (HTS) codes were queried to determine quantities (US tons, T) and breakdown of different soy product types being imported into the US from 2015 to 2020. A total of 78 different countries exported soy products to the US in 2019 and 2020, with top contributors being Canada (602,377 T and 530,759 T, respectively), India (438,563 T and 474,678 T, respectively), and Argentina (134,610 T and 87,602 T, respectively). In 2020, soy oilcake (641,846 T) was imported in the largest quantities, followed by organic soybeans (297,838 T) and soy oil (148,190 T). Of the 78 countries, 46 had cases of FAD reported through the World Organization for Animal Health (OIE) World Animal Health Information Database (WAHIS). Top exporters of soy products to the US from FAD+ countries in 2019 and 2020 were India (438,563 T and 474,678 T, respectively), Argentina (134,610 T in 2019), and Ukraine (44,415 T and 62,162 T, respectively). A system to monitor the sourcing of these products into the US and the end usage would allow for a greater understanding of the risk of these products to domestic swine herds.

Introduction
Feed has been linked to the US porcine epidemic diarrhea virus (PEDV) outbreak, and African swine fever virus (ASFV) contaminated feed has been shown to cause

1 Appreciation is expressed to Swine Health Information Center in Ames, IA, for partial funding of this project.
2 Department of Animal Sciences and Industry, College of Agriculture, Kansas State University.
3 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University.
Several viruses have been shown to survive shipping models in a variety of feed ingredients including soy products, such as soybean meal and soy oilcake. Several viruses included in this study such as ASFV, classical swine fever virus (CSFV), Ajueszky’s disease (pseudorabies), and foot and mouth disease (FMDV) are foreign animal diseases in the US and of direct interest to the swine industry. With this knowledge, it is critical to understand what feed ingredients are being imported to the US and where they originated, so the risk level of foreign animal disease introduction can be evaluated. Of particular interest are soybean meal and soy oil because of their likelihood of being added to swine diets. Soy products are the main area of concern due to their increased ability to harbor viable virus when compared to other ingredients, and the idea that most soy-based imports to the US are likely organic or non-GMO. Some work has been done to prove an analytical approach to quantify soy imports into the US but the analysis was focused only on ASFV-positive countries and not on total imports of soy products regardless of FAD status. The objectives of this paper were 1) to evaluate annual soy imports into the US by product type and determine the portion coming from countries with foreign animal disease (FAD), and 2) track soy import trends in regard to imports from FAD+ countries.

Materials and Methods

This work looked at the past five years of imports with a particular focus on 2019 and 2020. Product classification, quantity, country of origin, and year were obtained through the International Trade Commission Harmonized Tariff Schedule website (DataWeb). Product categories are identified by unique 10-digit Harmonized Tariff Schedule (HTS) codes. The 21 HTS codes associated with soy products that have potential to be used in animal feed were used to query the database. Several products, such as lecithins or butter substitutes, were included that may be in byproducts fed to animals. Data were exported to R (version 4.0.2, R core team, Vienna, Austria) and they were refined to total imports from each country by year and product type. Each HTS code was assigned a shortened description to improve data manipulation and reporting. Because of the low import rate of organic soy flour and meal; soy flour and meal; and soy flour and meal, not elsewhere specified or indicated (NESOI), these three HTS product categories were combined into one group in this report (Table 1). All soy oils, regardless of refinement level, were combined into one “soy oil” category because of the low volume of imports in each subsection. High-risk countries were identified.

8 Patterson, G., Niederwerder, M. C., Spronk, G., & Dee, S. A. (2020). Quantification of soya-based feed ingredient entry from ASFV-positive countries to the United States by ocean freight shipping and associated seaports. Transboundary and Emerging Diseases, n/a(n/a). doi:10.1111/tbed.13881.
for each year and based on reported cases in any country that the World Organization for Animal Health (OIE) identified as having ASFV, CSFV, FMDV, or pseudorabies cases during that year in their World Animal Health Information Database (WAHIS). Foreign animal disease status for each country by year was added to the import dataset.

Results and Discussion
The list of the top 10 countries exporting soy products to the US in 2019 was very similar to the 2020 list. Canada (602,377 T and 530,759 T, respectively), India (438,563 T and 474,678 T, respectively), and Argentina (134,610 T and 87,602 T, respectively) contributed the most to soy being imported into the US in both years (2019, Table 1; 2020, Table 2). Overall, soy oilcake (592,459 T and 641,846 T, respectively) was imported in the largest quantities, followed by organic soybeans (298,106 T and 297,838 T, respectively) and soy oil (187,085 T and 148,190 T, respectively). Soy flour and meal (6,479 T and 7,374 T, respectively) was the least commonly imported ingredient in both 2019 and 2020. Multiple countries (Argentina, China, India, Mexico, Moldova, Russia, Turkey, and Ukraine) within the top 10 exporters of soy to the US and several countries outside the top 10 had reported FAD cases in 2019 and/or 2020. The products these top FAD+ countries exported the most to the US were soy oilcake (381,471 T and 427,635 T, respectively) and organic soybeans (265,324 T and 175,313 T, respectively).

The current evaluation found organic soybean meal to be a very small portion of the imports into the US, with 7,374 T of organic and non-organic soybean meal being imported out of 1,360,818 T of total soy products in 2020. Less than a third of that soybean meal (2,384 T) was sourced from countries with FAD cases, which could be viewed as a low probability of disease introduction, but the severity and economic impact of disease introduction is still high. Even a small amount of virus in feed can still lead to infection in pigs because constant exposure to that low level may build up to an infectious level in their systems. Although organic SBM may not be a large contributor to US soy imports, soy oilcake is imported in large quantities. Soy oilcake is the byproduct of compressing soybeans to extract the soy oil. This oilcake can then be ground into soybean meal and included in swine diets. Soy oilcake made up 47% of soy imports in 2020, with 67% of the soy oilcake being imported from reported FAD+ countries. The largest contributor, overall and of reported FAD+ countries, of soy oilcake being imported into the US in 2020 was India (ASFV-positive) with 426,891 T. The current HTS codes do not differentiate between organic and non-organic soy oilcake; therefore, it was not possible to quantify the amount of this product that is organic using the USITC DataWeb.

From 2015 to 2020, imports from reported FAD+ countries increased from 526,691 T to 624,259 T (Figure 1). This increase was not consistent from year to year during this time period, with large increases in imports in 2017 and 2019 followed by a decrease in 2018 and 2020. The year that had the greatest quantity of soy imports from countries with FAD cases was 2019 with 725,114 T. India, China, and Ukraine were the top exporters of soy products to the US that had a consistently positive FAD status over these six years. Overall, imports from reported FAD+ countries contributed about 53% of the total soy imports in 2019 with India, Argentina, and Turkey being the largest individual contributors within this group. In 2020, approximately 46% of the total soy
imported was sourced from reported FAD+ countries. This high percentage is primarily
due to reports of FAD in India and Argentina.

It also should be noted that this information does not take into account that the prod-
ucts imported from FAD-negative countries may have been imported from somewhere
else previously. The interconnectedness of the global economy makes it difficult to
trace the original source of products in some cases. A deeper look into where a region’s
products are being sourced from would be beneficial in understanding the disease risk
of the product more objectively. The end use is also an important consideration because
a product that is used exclusively for human or industrial consumption also has a low
disease risk, even if it is contaminated, because of its removal from interaction with
swine herds.

Conclusion

Understanding the sources and intended uses of products being imported to the US
is vital to determining the risk of FAD disease introduction. Biosecurity of feed in the
US could improve when imports are analyzed to quantify the amounts and countries
of origin for feed ingredients. While this quantification is beneficial, it should not be
taken as a defining declaration of the risk of FAD introduction without a holistic view
of the storage, transport, and usage of imported soy products. Monitoring FAD disease
outbreaks and imports from countries could be useful for evaluating the risk of FAD
introduction into US swine herds more readily.
Table 1. Top 10 exporters in 2019 of soy to US with products, quantities (US ton, T), and FAD statusa,b

<table>
<thead>
<tr>
<th>Country</th>
<th>Total</th>
<th>Non-organic soybeans</th>
<th>Organic soybeans</th>
<th>Soy oilcake</th>
<th>Soy flours and meals</th>
<th>Soy oil</th>
<th>Bran, midds, residues</th>
<th>Lecithins</th>
<th>Mayonnaise</th>
<th>Salad dressings</th>
<th>Butter and margarine</th>
<th>Soybean seeds</th>
<th>FAD present in country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>134,610</td>
<td>0.0</td>
<td>97,823</td>
<td>16,331</td>
<td>0.0</td>
<td>1,268</td>
<td>18,356</td>
<td>832</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada</td>
<td>602,377</td>
<td>83,606</td>
<td>15,422</td>
<td>210,540</td>
<td>3,096</td>
<td>180,656</td>
<td>45,362</td>
<td>5,178</td>
<td>11,189</td>
<td>3,552</td>
<td>8,794</td>
<td>34,350</td>
<td>No</td>
</tr>
<tr>
<td>China</td>
<td>9,963</td>
<td>1,633</td>
<td>151</td>
<td>4,904</td>
<td>87</td>
<td>7.6</td>
<td>2,955</td>
<td>151</td>
<td>0.0</td>
<td>20.0</td>
<td>21</td>
<td>33</td>
<td>Yes</td>
</tr>
<tr>
<td>India</td>
<td>438,563</td>
<td>9,563</td>
<td>88,936</td>
<td>335,954</td>
<td>2,038</td>
<td>678</td>
<td>0.0</td>
<td>1,394</td>
<td>0.0</td>
<td>0.9</td>
<td>0.6</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>14,702</td>
<td>0.0</td>
<td>14,702</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>Mexico</td>
<td>22,964</td>
<td>3.5</td>
<td>2,403</td>
<td>0.0</td>
<td>282</td>
<td>3,856</td>
<td>0.0</td>
<td>0.0</td>
<td>756</td>
<td>12,410</td>
<td>3,254</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Moldova</td>
<td>6,598</td>
<td>0.0</td>
<td>6,598</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Russia</td>
<td>24,248</td>
<td>0.0</td>
<td>22,775</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1,173</td>
<td>293</td>
<td>0.0</td>
<td>6.8</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Turkey</td>
<td>25,737</td>
<td>0.0</td>
<td>503</td>
<td>24,221</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>994</td>
<td>19</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Ukraine</td>
<td>44,415</td>
<td>0.0</td>
<td>44,250</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>75</td>
<td>90</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Othersc</td>
<td>36,173</td>
<td>381</td>
<td>4,541</td>
<td>510</td>
<td>975</td>
<td>621</td>
<td>3,016</td>
<td>8,656</td>
<td>2,798</td>
<td>2,553</td>
<td>12,122</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Grand total</td>
<td>1,360,350</td>
<td>95,187</td>
<td>298,106</td>
<td>592,459</td>
<td>6,479</td>
<td>187,085</td>
<td>69,689</td>
<td>17,458</td>
<td>15,756</td>
<td>19,530</td>
<td>24,217</td>
<td>34,383</td>
<td>NA</td>
</tr>
</tbody>
</table>

a Countries, products, and T were obtained from the United States International Trade and Tariff Database.

b Foreign animal disease status was determined based on presence of African swine fever virus, classical swine fever virus, foot and mouth disease, and/or pseudorabies virus in a country during 2019 as reported by the OIE WAHIS Disease Time Chart database.

c Countries included in others: Afghanistan, Australia, Austria, Bangladesh, Barbados, Belarus, Belgium, Brazil, Chile, Colombia, Costa Rica, Croatia, Denmark, Dominican Republic, Ecuador, El Salvador, Ethiopia, France, Germany, Ghana, Greece, Guatemala, Guyana, Haiti, Hungary, Indonesia, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Lithuania, Malaysia, Morocco, Netherlands, Nigeria, North Macedonia, Norway, Peru, Philippines, Poland, Portugal, Serbia, Slovenia, South Korea, Spain, Sweden, Switzerland, Syria, Taiwan, Thailand, Togo, Trinidad and Tobago, United Kingdom, Uruguay, and Vietnam.
<table>
<thead>
<tr>
<th>Country</th>
<th>Total</th>
<th>Non-organic soybeans</th>
<th>Organic soybeans</th>
<th>Soy oilcake</th>
<th>Soy flours and meals</th>
<th>Soy oil</th>
<th>Bran, midds, residues</th>
<th>Lecithins</th>
<th>Mayonnaise</th>
<th>Salad dressings</th>
<th>Butter and margarine</th>
<th>Soybean seeds</th>
<th>FAD present in country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>87,602</td>
<td>176,369</td>
<td>72,640</td>
<td>8,318</td>
<td>0.0</td>
<td>250</td>
<td>5,665</td>
<td>0.0</td>
<td>552</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>Canada</td>
<td>530,759</td>
<td>77,147</td>
<td>21,014</td>
<td>167,692</td>
<td>3,989</td>
<td>136,138</td>
<td>47,303</td>
<td>4,227</td>
<td>13,215</td>
<td>1,823</td>
<td>8,170</td>
<td>50,037</td>
<td>No</td>
</tr>
<tr>
<td>China</td>
<td>3,691</td>
<td>1,332</td>
<td>169</td>
<td>516</td>
<td>36</td>
<td>0.0</td>
<td>1,399</td>
<td>205</td>
<td>11</td>
<td>24</td>
<td>0.0</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>India</td>
<td>474,678</td>
<td>4.5</td>
<td>42,007</td>
<td>426,891</td>
<td>1,927</td>
<td>2,375</td>
<td>0.0</td>
<td>1,474</td>
<td>0.0</td>
<td>0.0</td>
<td>0.9</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Mexico</td>
<td>30,826</td>
<td>20</td>
<td>8,287</td>
<td>0.0</td>
<td>446</td>
<td>3,254</td>
<td>0.0</td>
<td>0.0</td>
<td>897</td>
<td>15,059</td>
<td>2,864</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>Netherlands</td>
<td>3,552</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3,486</td>
<td>33</td>
<td>0.3</td>
<td>0.2</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>Russia</td>
<td>72,384</td>
<td>71,075</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>902</td>
<td>401</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Togo</td>
<td>12,560</td>
<td>351</td>
<td>12,209</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Turkey</td>
<td>44,663</td>
<td>0.0</td>
<td>0.0</td>
<td>37,783</td>
<td>0.0</td>
<td>4,306</td>
<td>26</td>
<td>0.0</td>
<td>869</td>
<td>1,668</td>
<td>13</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>Ukraine</td>
<td>62,162</td>
<td>61,832</td>
<td>0.0</td>
<td>648</td>
<td>976</td>
<td>1,849</td>
<td>1,563</td>
<td>4,880</td>
<td>3,533</td>
<td>2,564</td>
<td>11,484</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Others</td>
<td>37,940</td>
<td>1,840</td>
<td>8,606</td>
<td>648</td>
<td>976</td>
<td>1,849</td>
<td>1,563</td>
<td>4,880</td>
<td>3,533</td>
<td>2,564</td>
<td>11,484</td>
<td>0.0</td>
<td>Yes</td>
</tr>
<tr>
<td>Grand total</td>
<td>1,360,817</td>
<td>80,869</td>
<td>297,838</td>
<td>641,846</td>
<td>7,374</td>
<td>148,190</td>
<td>55,970</td>
<td>15,929</td>
<td>19,083</td>
<td>21,138</td>
<td>22,541</td>
<td>50,037</td>
<td>NA</td>
</tr>
</tbody>
</table>

* Countries, products, and T were obtained from the United States International Trade and Tariff Database.
* Foreign animal disease status was determined based on prevalence of African swine fever, classical swine fever, foot and mouth disease, and/or pseudorabies in a country during 2020 as reported by the OIE WAHIS Disease Time Chart database.
* Countries included in others: Afghanistan, Australia, Austria, Austria, Belgium, Benin, Brazil, Chile, Colombia, Costa Rica, Croatia, Czech Republic, Denmark, Dominican Republic, Ecuador, Egypt, Ethiopia, France, Germany, Greece, Guatemala, Guyana, Haiti, Hungary, Indonesia, Iran, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kenya, Lithuania, Malaysia, Morocco, Nigeria, North Macedonia, Norway, Paraguay, Peru, Philippines, Poland, Portugal, Rwanda, Senegal, Serbia, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, Syria, Taiwan, Thailand, Trinidad and Tobago, United Arab Emirates, United Kingdom, Uruguay, Venezuela, and Vietnam.
* Data for 2020 may be incomplete due to several countries not having reports available at the time of data collection.
Figure 1. Imports from countries with foreign animal disease from 2015 to 2020 and the top 5 exporters of soy to the US by quantity (Tons)a,b

Dashed lines indicate years that a country did not have FAD status reported or there were no positive cases.

Diamond markers are the single year that a country had reported FAD cases.

Open diamond markers indicate the beginning of years that the country is FAD-negative or data was incomplete/not reported.

a Countries of origin and quantities (Ton) of soy imports were obtained from the United States International Trade and Tariff Database.

b Foreign animal disease status was determined based on presence of African swine fever virus, classical swine fever virus, foot and mouth disease, and/or pseudorabies in a country during each year as reported by the OIE WAHIS Quantitative Data database.

c No differentiation provided in figure between countries reporting no FAD cases and countries with no FAD data for 2020 in the OIE WAHIS Quantitative Database.