Kansas Agricultural Experiment Station Research Reports

Volume 9 Issue 6 Western Kansas Agricultural Research

Article 12

2023

Residual Herbicides as Single and Sequential Treatments for Efficacy in Corn

Randall S. Currie Kansas State University, rscurrie@ksu.edu

Patrick W. Geier Kansas State University, pgeier@k-state.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Weed Science Commons

Recommended Citation

Currie, Randall S. and Geier, Patrick W. (2023) "Residual Herbicides as Single and Sequential Treatments for Efficacy in Corn," *Kansas Agricultural Experiment Station Research Reports*: Vol. 9: Iss. 6. https://doi.org/10.4148/2378-5977.8496

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2023 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.

2023 WESTERN KANSAS AGRICULTURAL RESEARCH

Residual Herbicides as Single and Sequential Treatments for Efficacy in Corn

R.S. Currie and P.W. Geier

Summary

This research investigated the use of sequential applications of residual herbicides for the weed-free period in corn. The objective of the study was to compare residual herbicides as either preemergence (PRE) alone or split applications (PRE followed by postemergence). All treatments controlled Palmer amaranth, common lambsquarters, Russian thistle, and green foxtail 90% or more, and kochia 95% or more. Johnsongrass control early in the season was 91% or more regardless of treatment. However, no herbicide controlled johnsongrass as much as 80% late in the year.

Introduction

Weed free conditions during crop establishment are important to minimize competition. This is most often accomplished by applying a residual herbicide close to planting time. Delaying a portion of the residual herbicide to be applied as a postemergence (POST) treatment can increase the period of weed-free conditions and aid in controlling herbicide-resistant weeds. The objective of this study was to compare single herbicide applications and split applications for season-long efficacy in corn.

Experimental Procedures

An experiment compared residual herbicides applied preemergence or as split applications for season-long weed control in corn. Herbicides were applied using a tractor-mounted, compressed- CO_2 sprayer delivering 19.4 gpa at 30 psi and 4.1 mph. Application dates, environmental, and plant information are given in Table 1. Plots size was 10 by 35 feet, and the study was arranged as a randomized complete block replicated four times. Soil was a Beeler silt loam containing 2.4% organic matter, pH of 7.5, and CEC of 17.8. Visual weed control ratings were taken June 3 and July 27, 2022. These dates were 16 and 70 days after the postemergence treatments (DA-B), respectively.

Results and Discussion

Control of Palmer amaranth, common lambsquarters, Russian thistle, and green foxtail was 90% or more with all treatments at 16 and 70 DA-B and did not differ between herbicides (data not shown). All herbicides controlled kochia 95% or more at each rating date (Table 2). Johnsongrass control early in the season was 96% or more when Acuron GT (*S*-metolachlor/glyphosate/mesotrione/bicyclopyrone) or Acuron (*S*-metolachlor/atrazine/mesotrione/bicyclopyrone) were applied POST or when Resicore (acetochlor/clopyralid/mesotrione) was applied sequentially. However, johnsongrass control did not exceed 78% with any treatment late in the season.

Acknowledgments

Funding for this research was provided by Syngenta AG.

Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. Persons using such products assume responsibility for their use in accordance with current label directions of the manufacturer.

Application timing	Preemergence	Postemergence		
Application date	April 28, 2022	May 18, 2022		
Air temperature, °F	65	67		
Relative humidity, %	78	57		
Soil temperature, °F	56	64		
Wind speed, mph	3 to 6	0 to 3		
Wind direction	Southwest	North		
Soil moisture	Good	Good		
Corn				
Height, inches		3 to 5		
Leaves, no.	0	1 to 2		
Kochia				
Height, inches		1 to 3		
Density, plants/ft ²	0	0.2		
Russian thistle				
Height, inches		1 to 4		
Density, plants/ft ²	0	0.2		
Palmer amaranth				
Height, inches		0.5 to 1.5		
Density, plants/ft ²	0	0.2		
Common lambsquarters				
Height, inches		0.5 to 2		
Density, plants/ft ²	0	0.1		
Green foxtail				
Height, inches		1 to 2		
Density, plants/ft ²	0	0.1		
Johnsongrass				
Height, inches		0.5 to 1.5		
Density, plants/ft ²	0	0.2		

Table 1. Application, environmental, and plant information for the single and sequential herbicides in corn

2023 WESTERN KANSAS AGRICULTURAL RESEARCH

Treatment			Кос	chia	Johnsongrass		
	Rate	Timing ¹	16 DA-B ²	70 DA-B	16 DA-B	70 DA-F	
	qt/a			% V	% Visual		
Lumax EZ	2.7	PRE	99	98	93	58	
Atrazine	0.5	PRE					
Acuron	3.0	PRE	100	100	91	63	
Atrazine	0.5	PRE				-	
Lumax EZ	1.35	PRE	100	100	100	78	
Atrazine	0.5	PRE					
Acuron GT	3.75 pt	POST					
Atrazine	0.5	POST					
Nonionic surfactant	0.5%	POST					
Ammonium sulfate	2.0%	POST					
Bicep Lite II	1.5	PRE	100	100	100	73	
Magnum	3.75 pt	POST					
Acuron GT	0.5	POST					
Atrazine	0.5%	POST					
Nonionic surfactant	2.0%	POST					
Ammonium sulfate							
Lumax EZ	2.25	PRE	100	99	100	75	
Atrazine	0.5	PRE					
Acuron GT	3.75 pt	POST					
Atrazine	0.5	POST					
Nonionic surfactant	0.5%	POST					
Ammonium sulfate	2.0%	POST					
Acuron	1.5	PRE	100	100	99	75	
Atrazine	0.38	PRE					
Acuron	1.5	POST					
Atrazine	0.38	POST					
Glyphosate	27 oz	POST					
Ammonium sulfate	2.0%	POST					
Resicore	1.5	PRE	100	100	96	48	
Resicore	1.5	POST					
Glyphosate	27 oz	POST					
Ammonium sulfate	2.0%	POST					
Verdict	14 oz	PRE	96	95	91	45	
Status	5.0 oz	POST					
Glyphosate	27 oz	POST					
Nonionic surfactant	0.5%	POST					
Ammonium sulfate	2.0%	POST					
Harness Xtra 5.6	2.3	PRE	100	100	91	40	
Diflexx Duo	24 oz	POST					
Glyphosate	27 oz	POST					
Crop oil concentrate	1.0%	POST					
Urea ammonium	2.0%	POST					
nitrate							
LSD (0.05)			2	NS	5	9	

¹ PRE = preemergence. POST = postemergence.

 2 DA-B = days after the postemergence treatment.

KANSAS STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION AND COOPERATIVE EXTENSION SERVICE

2023 WESTERN KANSAS AGRICULTURAL RESEARCH

Figure 1. Untreated control.

Figure 2. Lumax EZ 2.7 qt/a plus atrazine 0.5 qt/a applied preemergence. Photo taken 83 days after the preemergence application.

Figure 3. Acuron 3.0 qt/a plus atrazine 0.5 qt/a applied preemergence. Photo taken 83 days after the preemergence application.

Figure 4. Lumax EZ 1.35 qt/a plus atrazine 0.5 qt/a applied preemergence followed by Acuron GT 3.75 pt/a plus atrazine 0.5 qt/a applied postemergence. Photo taken 63 days after the postemergence application.

KANSAS STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION AND COOPERATIVE EXTENSION SERVICE

2023 WESTERN KANSAS AGRICULTURAL RESEARCH

Figure 5. Resicore 1.5 qt/a applied preemergence followed by Resicore 1.5 qt/a plus glyphosate 27 oz/a applied postemergence. Photo taken 63 days after the postemergence application.