A method for concentrating dilute protein solutions

N. H. Horowitz

M. Fling

Follow this and additional works at: http://newprairiepress.org/fgr

Recommended Citation


This Technical Note is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
A method for concentrating dilute protein solutions

Abstract
A method for concentrating dilute protein solutions

Creative Commons License
This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

This technical note is available in Fungal Genetics Reports: http://newprairiepress.org/fgr/vol2/iss1/18

We have found that dialysis against solid sucrose is an effective way to concentrate dilute solutions of tyrosinase encountered in the course of isolation of the enzyme. The dialysing tubing containing the solution to be concentrated is coiled up in a beaker (or a bucket, if large volumes are involved) and is covered with commercial sucrose. The liquid should be poured off as it accumulates outside the dialysing bag. Dialysis should not proceed for longer than 4 hours, since an excessive concentration of sucrose inside the bag will cause it to burst at the next step. The tubing is removed from the sugar at the end of this time, is tied off above the solution, and is placed in buffer or water to dialyse away the sugar. A 75 to 90% reduction of volume can be obtained in this way, depending on the initial salt concentration in the protein solution. If desired, the entire procedure can be repeated on the concentrate.

Ammonium sulfate can be used instead of sucrose, but we have obtained only a 30 to 50% reduction of volume with its use. In addition, it precipitates, as well as concentrates, the protein.

These methods are superior to the use of polyvinylpyrrolidone or polyethylene glycol (carbowax), in our experience. Both of the latter compounds pass through ordinary dialysing membrane in sufficient amounts to be serious contaminants, and once they get into a protein solution, they are very hard to get rid of. ---Biology Division, California Institute of Technology, Pasadena, California.

Ishikawa, T. A method to improve the fertility of interallelic crosses.

To elucidate the genetic fine structure at a locus, the first barrier to be overcome in most cases may be the sterility of the interallelic crosses. In fact, interallelic crosses at the ad-8 locus usually produce a considerable number of perithecia but no ascospores are formed, or when ascospores are formed, almost all ascospores are white or brownish and sterile (fertility, less than 1%). Various attempts have been made to improve the fertility of ad-8 interallelic crosses using variations of crossing media and culture conditions.

A fruitful finding was the fact that lower concentrations of sucrose (0.05 - 0.01%) in the Westergaard and Mitchell's crossing media containing an optimum amount of the supplement (400 μg/ml adenine) was definitely effective in increasing the fertility (up to 30%). With a low concentration of sucrose, the possibility of improving further the fertility has been investigated by supplementing varying amounts of amino acids, purines, pyrimidines, and inorganic salts. None of these supplements seemed to have any effect in improving the fertility. The optimum temperature for interallelic crosses appears to be about 25°C, light has essentially no effect and pH variation shows no significant effect on the fertility within the range 4.0 - 8.0. In place of sucrose, various carbon sources were tested as well. Most carbon sources tested - acetate, citrate, fumarate, lactate, malate, various hexoses, various disaccharides, starch, etc. - were active in supporting crossing as well as growth. Among these substances, acetate gave a higher fertility than other carbon sources (about 40%).

It was noted, however, than a low concentration of carbon also resulted in a reduction in the number of perithecia (less than 10 perithecia in a 20 x 150 mm test tube). In the course of these experiments, it was found by chance that the addition of filter paper as a sole carbon source was effective in producing large numbers of perithecia (more than 20 perithecia in a tube) which shot a considerable number of fertile ascospores. Powdered cellulose and several derivatives of cellulose (e.g., methylcellulose, N,N-diethyldimethylcellulose, etc.) showed the same effect as filter paper. The addition of a small amount of acetate (0.01 - 0.005%) as another carbon source to the filter paper media seems to give better germination. One third of a circular filter paper (Balstone No. 1; diameter 110 mm) was torn into several pieces and put into the crossing medium in a 125 ml Erlenmeyer flask before autoclaving. A cross made in such a flask gave a significant number of fertile ascospores for an analysis of the fine structure within the ad-8 locus. It may be, however, commented that the fertility problem should be investigated for various possibilities at each locus, since this method was not effective for the ad-4 and ad-5 interallelic crosses.

---Botanical Institute, University of Tokyo, Hongo, Tokyo, Japan.