January 2015

Evaluation of Experimental Zoysiagrasses in Southern Kansas

L. Parsons
Kansas State University, lparsons@ksu.edu

J. Fry
Kansas State University, jfry@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright January 2015 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Evaluation of Experimental Zoysiagrasses in Southern Kansas

Abstract
Kansas State University has been cooperating with Texas A&M AgriLife Research – Dallas to identify zoysiagrasses that are superior in quality to 'Meyer,' the industry standard, and that have equivalent or better freeze tolerance. Six of eight experimental crosses between select Zoysia cultivars were established in Wichita, Kansas, in 2009 and since that time have had consistently superior ratings in three or more measures.

Keywords
Turfgrass, zoysiagrass, 'Meyer' zoysiagrass, Zoysia japonica, Z. matrella, 'Emerald' zoysiagrass

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Evaluation of Experimental Zoysiagrasses in Southern Kansas

Linda R. Parsons¹ and Jack D. Fry¹

Summary. Kansas State University has been cooperating with Texas A&M AgriLife Research – Dallas to identify zoysiagrasses that are superior in quality to ‘Meyer,’ the industry standard, and that have equivalent or better freeze tolerance. Six of eight experimental crosses between select Zoysia cultivars were established in Wichita, Kansas, in 2009 and since that time have had consistently superior ratings in three or more measures.

Rationale. Zoysiagrass is a warm-season turfgrass suitable for use in home lawns and golf course fairways within the transition zone. Currently, the cultivar of choice for these purposes is Zoysia japonica ‘Meyer.’ Cultivars of Z. matrella and the cultivar Z. japonica × pacifica ‘Emerald’ are recognized for their high quality, but they lack freeze tolerance. Cultivars of Z. japonica have better freeze tolerance but are generally coarser in texture and lack the quality of Z. matrella cultivars and ‘Emerald.’ Researchers evaluated zoysiagrass progeny associated with reciprocal crosses between Z. japonica and Z. matrella or Z. japonica and ‘Emerald’ to identify those hybrids that demonstrated qualities superior to those of ‘Meyer’ under southern Kansas environmental conditions.

Objective. Evaluate experimental zoysiagrass hybrids for their performance in Wichita, Kansas.

Study Description. During the summer of 2009, ‘Meyer’ and eight experimental hybrids of zoysiagrass were established in 27 study plots, each measuring 5 ft × 5 ft, in a randomized complete block design at the John C. Pair Horticultural Center in Haysville, Kansas. The experimental zoysiagrasses are progeny from crosses between

¹ Department of Horticulture, Forestry, and Recreation Resources.
Z. japonica and Z. matrella cultivars or Zoysia japonica × (Z. japonica × pacifica). From 2009 through 2014, researchers collected information on spring greenup, quality, genetic color, leaf texture, fall color retention, and percent cover. Spring greenup, quality, genetic color, leaf texture, and fall color retention were rated visually on a scale 1 to 9 (1 = poorest, 6 = acceptable, and 9 = optimum measure). Percent cover was rated visually on a scale of 0% to 100%.

Results. Data collection began at the end of the 2009 growing season with a review of percent cover as a measure of cultivar establishment. ‘Chisholm’, KSUZ 0803, KSUZ 0804, and KSUZ 0807 were the best established (Table 1). Starting at the end of April 2010, and then every spring through 2014, plots were rated for greenup, with KSUZ 0802 and KSUZ 0806 rated as earliest. During the course of the growing season, generally May through September, the turf quality was rated monthly, with ratings influenced by degree of cover, weed infestation, and disease resistance, as well as turf color, texture, and density. The overall best performers in the study were KSUZ 0802, ‘Chisholm’, KSUZ 0805, KSUZ 0806, and KSUZ 0804. Every full year of the study, ratings for turf genetic color and texture showed that KSUZ 0805, KSUZ 0803, and KSUZ 0806 were the darkest green and KSUZ 0802, KSUZ 0804, KSUZ 0807, and KSUZ 0806 had the finest texture. The zoysia plots usually started to lose color and go dormant near the beginning of October. Color retention ratings in middle to late October showed that KSUZ 0803, ‘Chisolm,’ and KSUZ 0807 stayed green the longest. Based on these evaluations and results from locations in other areas of the transition zone, release of KSUZ 0802 is in progress, and it should be available as a commercial cultivar in the near future.
Table 1. 2009–2014 performance of zoysia cultivars at Wichita, Kansas.¹

<table>
<thead>
<tr>
<th>Cultivar/Experimental Number</th>
<th>2009 % Cover²</th>
<th>Spring Greenup</th>
<th>Genetic Color</th>
<th>Leaf Texture</th>
<th>Fall Color</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSUZ 0802</td>
<td>48.3</td>
<td>5.5</td>
<td>5.9</td>
<td>7.3</td>
<td>4.0</td>
<td>5.5</td>
</tr>
<tr>
<td>'Chisolm'</td>
<td>91.0</td>
<td>5.0</td>
<td>5.0</td>
<td>4.7</td>
<td>5.1</td>
<td>5.3</td>
</tr>
<tr>
<td>KSUZ 0805</td>
<td>58.3</td>
<td>4.8</td>
<td>7.0</td>
<td>6.5</td>
<td>4.4</td>
<td>5.2</td>
</tr>
<tr>
<td>KSUZ 0806</td>
<td>31.7</td>
<td>5.3</td>
<td>6.7</td>
<td>6.6</td>
<td>4.9</td>
<td>5.1</td>
</tr>
<tr>
<td>KSUZ 0804</td>
<td>63.3</td>
<td>4.5</td>
<td>6.5</td>
<td>6.8</td>
<td>4.4</td>
<td>5.0</td>
</tr>
<tr>
<td>KSUZ 0803</td>
<td>70.0</td>
<td>4.6</td>
<td>6.9</td>
<td>6.1</td>
<td>6.5</td>
<td>4.9</td>
</tr>
<tr>
<td>KSUZ 0807</td>
<td>63.3</td>
<td>4.7</td>
<td>6.6</td>
<td>6.7</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>'Meyer'</td>
<td>58.3</td>
<td>5.0</td>
<td>6.6</td>
<td>5.7</td>
<td>4.9</td>
<td>4.6</td>
</tr>
<tr>
<td>KSUZ 0801</td>
<td>36.7</td>
<td>4.7</td>
<td>5.5</td>
<td>6.2</td>
<td>4.9</td>
<td>4.5</td>
</tr>
<tr>
<td>LSD³</td>
<td>23.3</td>
<td>0.5</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

¹ Visual ratings were based on a scale of 1 to 9 (1 = poorest, 6 = acceptable, and 9 = optimum measure).
² Percent cover was rated visually on a scale of 0% to 100%.
³ To determine statistical differences among entries, subtract one entry’s mean from another’s. If the result is larger than the corresponding Least Significant Difference (LSD) value, the two are statistically different.