November 2016

Tech Transfer: KSURF and KSU-IC: Turning discovery into commercial success

Pat Melgares
Kansas State University

Follow this and additional works at: https://newprairiepress.org/seek

Part of the Higher Education Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Recommended Citation

This Article is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Seek by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
Macrocyclic and peptidomimetic compounds as broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, caliciviruses and coronaviruses.

Composition and methods for controlling parasitic nematodes.

Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers vertically aligned carbon nanofibers.

Electrochemically-grown nanowires and uses thereof.

Several biological fields can thank K-State for a new helpful tool. These nanowires can manipulate and sense the environment at the single-contact cellular level. Whereas conventional scalpels and curettes are too big and bulky to remove surrounding tissue and cells for transplant procedures, this sleek device can get in close and do the job.

Several biomedical fields can thank K-State for a new helpful tool. These nanowires can manipulate and sense the environment at the single-contact cellular level. Whereas conventional scalpels and curettes are too big and bulky to remove surrounding tissue and cells for transplant procedures, this sleek device can get in close and do the job.

Patented discoveries vanquish viruses, boost batteries, advance agriculture

By Tiffany Roney

Kansas State University faculty and students are some of the most inventive people around. The following original methods and devices are among the patents the university earned in 2016 — with additional patents expected by year-end.

Macrocyclic and peptidomimetic compounds as broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, caliciviruses and coronaviruses.

Composition and methods for controlling parasitic nematodes.

Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers vertically aligned carbon nanofibers.

Electrochemically-grown nanowires and uses thereof.

Several biological fields can thank K-State for a new helpful tool. These nanowires can manipulate and sense the environment at the single-contact cellular level. Whereas conventional scalpels and curettes are too big and bulky to remove surrounding tissue and cells for transplant procedures, this sleek device can get in close and do the job.

Several biomedical fields can thank K-State for a new helpful tool. These nanowires can manipulate and sense the environment at the single-contact cellular level. Whereas conventional scalpels and curettes are too big and bulky to remove surrounding tissue and cells for transplant procedures, this sleek device can get in close and do the job.

Patented discoveries vanquish viruses, boost batteries, advance agriculture

By Tiffany Roney

Kansas State University faculty and students are some of the most inventive people around. The following original methods and devices are among the patents the university earned in 2016 — with additional patents expected by year-end.

Macrocyclic and peptidomimetic compounds as broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, caliciviruses and coronaviruses.

Composition and methods for controlling parasitic nematodes.

Lithium-ion battery anode including core-shell heterostructure of silicon coated vertically aligned carbon nanofibers vertically aligned carbon nanofibers.

Electrochemically-grown nanowires and uses thereof.

Several biological fields can thank K-State for a new helpful tool. These nanowires can manipulate and sense the environment at the single-contact cellular level. Whereas conventional scalpels and curettes are too big and bulky to remove surrounding tissue and cells for transplant procedures, this sleek device can get in close and do the job.

Several biomedical fields can thank K-State for a new helpful tool. These nanowires can manipulate and sense the environment at the single-contact cellular level. Whereas conventional scalpels and curettes are too big and bulky to remove surrounding tissue and cells for transplant procedures, this sleek device can get in close and do the job.

Patented discoveries vanquish viruses, boost batteries, advance agriculture

By Tiffany Roney

Kansas State University faculty and students are some of the most inventive people around. The following original methods and devices are among the patents the university earned in 2016 — with additional patents expected by year-end.