January 2016

Large-Scale Dryland Cropping Systems

A. Schlegel
Kansas State University, schlegel@ksu.edu

L. Haag
Kansas State University, lhaag@ksu.edu

D. O’Brien
Kansas State University, dobrien@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright January 2016 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Large-Scale Dryland Cropping Systems

Abstract
This study was conducted from 2008 to 2015 at the Kansas State University Southwest Research-Extension Center near Tribune, Kansas. The crop rotations evaluated were continuous grain sorghum (SS), wheat-fallow (WF), wheat-corn-fallow (WCF), wheat-sorghum-fallow (WSF), wheat-corn-sorghum-fallow (WCSF), and wheat-sorghum-corn-fallow (WSCF). All rotations were grown using no-till practices except for WF, which was grown using reduced-tillage. Precipitation capture efficiency was not greater with more intensive rotations. Wheat yields were not affected by length of rotation. Corn and grain sorghum yields were about 60% greater when following wheat than when following corn or grain sorghum. Grain sorghum yields were almost twice as great as corn in similar rotations. The most profitable cropping system was wheat-sorghum-fallow.

Keywords
large-scale dryland cropping systems, conventional tillage, no-till, wheat, fallow, corn, sorghum

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Cover Page Footnote
This research project received support from the USDA-ARS Ogallala Aquifer Program.
Large-Scale Dryland Cropping Systems

A. Schlegel, L. Haag, and D. O’Brien

Summary
This study was conducted from 2008 to 2015 at the Kansas State University Southwest Research-Extension Center near Tribune, Kansas. The crop rotations evaluated were continuous grain sorghum (SS), wheat-fallow (WF), wheat-corn-fallow (WCF), wheat-sorghum-fallow (WSF), wheat-corn-sorghum-fallow (WCSF), and wheat-sorghum-corn-fallow (WSCF). All rotations were grown using no-till practices except for WF, which was grown using reduced-tillage. Precipitation capture efficiency was not greater with more intensive rotations. Wheat yields were not affected by length of rotation. Corn and grain sorghum yields were about 60% greater when following wheat than when following corn or grain sorghum. Grain sorghum yields were almost twice as great as corn in similar rotations. The most profitable cropping system was wheat-sorghum-fallow.

Introduction
The change from conventional tillage to no-till cropping systems has allowed for greater intensification of cropping in semi-arid regions. In the central High Plains, wheat-fallow (1 crop in 2 years) has been a popular cropping system for many decades. This system is being replaced by more intensive wheat-summer crop-fallow rotations (2 crops in 3 years). There has also been increased interest in further intensifying the cropping systems by growing 3 crops in 4 years or continuous cropping. The objective of the study was to identify whether more intensive cropping systems can enhance and stabilize production in rainfed cropping systems to optimize economic crop production, more efficiently capture and utilize scarce precipitation, and maintain or enhance soil resources and environmental quality. This project evaluates several multi-crop rotations that are feasible for the region, along with alternative systems that are more intensive than 2- or 3-year rotations. The objectives are to (1) enhance and stabilize production of rainfed cropping systems through the use of multiple crops and rotations using best management practices to optimize capture and utilization of precipitation for economic crop production, and (2) enhance adoption of alternative rainfed cropping systems that provide optimal profitability.

Procedures
The crop rotations are 2-year (wheat-fallow [WF]); 3-year (wheat-grain sorghum-fallow [WSF] and wheat-corn-fallow [WCF]); 4-year rotations (wheat-corn-sorghum-fallow [WCSF] and wheat-sorghum-corn-fallow [WSCF]); and continuous sorghum [SS]). All rotations are grown using no-till (NT) practices except for WF, which is grown using reduced-tillage (RT). All phases of each rotation are present each year. Plot size is
a minimum of 100 × 450 ft. In most instances, grain yields were determined by harvesting the center 60 ft (by entire length) of each plot with a commercial combine and determining grain weight with a weigh-wagon or combine yield monitor. Soil water was measured in 12-inch increments to 96 inches near planting and after harvest either gravimetrically (RT WF) or by neutron attenuation (NT plots). An economic analysis calculated net returns to land and management using custom rates for all machine operations, local costs of inputs, and average annual grain prices.

Results and Discussion

Precipitation averaged 96% of normal (17.90 in.) across the 8-yr study period and was near normal (+/- 15%) in 5 out of 8 years with two wet years (>20% above normal) and one exceptionally dry year (42% of normal) (Figure 1). Fallow accumulation, fallow efficiency, and profile available water at wheat planting was greater with WF than all other wheat rotations (Table 1). The fallow efficiencies of the 3- and 4-yr NT rotations were only 54-68% of WF under RT. With more water available, crop water use was also greater with WF than with wheat in other rotations. There were no differences in available water at wheat planting or crop water use among the 3- and 4-yr rotations.

Fallow accumulation prior to corn planting and profile available soil water at planting was greater following wheat (WCF or WCSF) than following grain sorghum (WSCF) (Table 1). However, the fallow period following wheat was longer, resulting in low fallow efficiencies (~15%) following wheat and only 22% following sorghum. Similar to wheat, corn water use was greater with greater available soil water at planting. Grain sorghum responded similarly to corn, with greater fallow accumulation and soil water at planting (and greater crop water use) when following wheat than following corn or sorghum. Again, fallow efficiencies prior to grain sorghum were very low, less than 17%.

Wheat yields varied greatly from less than 5 to almost 50 bu/a (Figure 2). The effect of cropping systems was not consistent across years with WF sometimes in the highest yielding group and sometimes in the lowest yielding group. Averaged across the 8 years, cropping system had little effect on wheat yields.

Grain sorghum yields varied greatly from year to year (ranging from less than 10 to more than 100 bu/a) but were consistently higher following wheat than either corn or sorghum (Figure 3). Average grain sorghum yields following wheat were about twice as great as following corn or sorghum.

Corn yields varied from less than 10 to greater than 80 bu/a (Figure 4). Corn yields following wheat in either the 3- or 4-yr rotations were always greater than corn yields following grain sorghum except in 2015 where corn yields following sorghum (wsCf) were great than wCf. On average, corn yields following wheat were about 60% greater than following grain sorghum.

When examining grain yields across crops, the greatest yields were produced by grain sorghum following wheat (either wSf or wScf) of about 65 bu/a (Figure 5). These yields were about twice that of corn following wheat (wCf or wCsf). Sorghum yields following wheat were also about twice that of sorghum following corn or sorghum (wsCf or
SS) while corn yields following wheat (wCf or wCsf) were more than 60% greater than following sorghum.

An economic analysis (excluding crop insurance and government payments) based on annual crop prices and input costs evaluated the average net returns to land and management from the six rotations. The only rotation that had a positive net return (although small at less than $6 per acre) was WSF (Figure 5). The next most profitable rotation was WF (negative $18 per acre) with all other rotations having negative returns of more than $35 per acre.

Acknowledgments

This research project received support from the USDA-ARS Ogallala Aquifer Program.

Table 1. Fallow accumulation, fallow efficiency, profile (8 ft) available soil water at planting, and crop water use by wheat, corn, and grain sorghum in several crop rotations, Tribune, Kansas, 2008-2015.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Rotation</th>
<th>Fallow accumulation</th>
<th>Fallow efficiency</th>
<th>Profile ASW at planting</th>
<th>Crop water use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>Wf</td>
<td>6.47a</td>
<td>28a</td>
<td>9.38a</td>
<td>16.70a</td>
</tr>
<tr>
<td></td>
<td>Wsf</td>
<td>2.76bc</td>
<td>19b</td>
<td>6.11b</td>
<td>12.65b</td>
</tr>
<tr>
<td></td>
<td>Wcf</td>
<td>2.26c</td>
<td>15c</td>
<td>5.77b</td>
<td>12.51b</td>
</tr>
<tr>
<td></td>
<td>Wscf</td>
<td>2.92b</td>
<td>18b</td>
<td>6.11b</td>
<td>12.70b</td>
</tr>
<tr>
<td></td>
<td>Wcsf</td>
<td>2.74bc</td>
<td>17bc</td>
<td>6.10b</td>
<td>12.65b</td>
</tr>
<tr>
<td>LSD.05</td>
<td></td>
<td>0.55</td>
<td>3</td>
<td>0.67</td>
<td>0.58</td>
</tr>
<tr>
<td>Corn</td>
<td>wCf</td>
<td>2.07a</td>
<td>16b</td>
<td>5.24a</td>
<td>13.28a</td>
</tr>
<tr>
<td></td>
<td>wCsf</td>
<td>1.87a</td>
<td>15b</td>
<td>5.10a</td>
<td>13.17a</td>
</tr>
<tr>
<td></td>
<td>wsCf</td>
<td>0.95b</td>
<td>22a</td>
<td>3.99b</td>
<td>12.47b</td>
</tr>
<tr>
<td>LSD.05</td>
<td></td>
<td>0.41</td>
<td>4</td>
<td>0.64</td>
<td>0.49</td>
</tr>
<tr>
<td>Grain sorghum</td>
<td>wSf</td>
<td>1.97b</td>
<td>14</td>
<td>5.33a</td>
<td>12.50a</td>
</tr>
<tr>
<td></td>
<td>wScf</td>
<td>2.48a</td>
<td>17</td>
<td>5.51a</td>
<td>12.81a</td>
</tr>
<tr>
<td></td>
<td>wcSf</td>
<td>1.01c</td>
<td>15</td>
<td>4.56b</td>
<td>11.80b</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>1.17c</td>
<td>17</td>
<td>4.40b</td>
<td>11.69b</td>
</tr>
<tr>
<td>LSD.05</td>
<td></td>
<td>0.42</td>
<td>4</td>
<td>0.66</td>
<td>0.43</td>
</tr>
</tbody>
</table>

1 Wheat-fallow rotation is reduced-till; all other rotations are no-till. Means within a column with the same letter for the same crop are not statistically different at $P=0.05$. The capital letter in the rotation denotes the crop phase of the rotation.

2 Available soil water in a 8 ft profile at planting.
Figure 1. Annual (2008-2015) and normal precipitation (1981-2010), Tribune, Kansas.

Figure 2. Wheat yields by cropping system, 2008-2015.
Figure 3. Grain sorghum yields by cropping system, 2008-2015.

Figure 4. Corn yields by cropping system, 2008-2015.
Figure 5. Average grain yields by cropping system, 2008-2015.

Figure 6. Average annual net returns to land and management, 2008-2015, Tribune, Kansas.