January 2016

Wheat Stubble Height on Subsequent Corn and Grain Sorghum Crops

A. Schlegel
Kansas State University, schlegel@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2016 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Wheat Stubble Height on Subsequent Corn and Grain Sorghum Crops

A. Schlegel

Summary
A field study initiated in 2006 was designed to evaluate the effects of three wheat stubble heights on subsequent grain yields of corn and grain sorghum. Corn and sorghum yields in 2015 were greater than the long-term average. When averaged from 2007 through 2015, corn grain yields were 10 bu/a greater when planted into either high or strip-cut stubble than into low-cut stubble. Average grain sorghum yields were 6 bu/a greater in high-cut stubble than low-cut stubble. Similarly, water use efficiency was greater for high or strip-cut stubble for corn and high-cut stubble for grain sorghum. Harvesting wheat shorter than necessary causes a yield penalty for the subsequent row crops, especially dryland corn.

Introduction
Seeding of summer row crops throughout the west-central Great Plains often occurs following wheat in a 3-year rotation (wheat-summer crop-fallow). Wheat residue provides numerous benefits, including evaporation suppression, delayed weed growth, improved capture of winter snowfall, and reduced soil erosion. Stubble height affects wind velocity profile, surface radiation interception, and surface temperatures, all of which affect evaporation suppression and winter snow catch. Taller wheat stubble is also beneficial to pheasants in postharvest and overwinter fallow periods. Using stripper headers increases harvest capacity and provides taller wheat stubble than previously attainable with conventional small-grains platforms. Increasing wheat cutting heights or using a stripper header should further improve the effectiveness of standing wheat stubble. The purpose of this study is to evaluate the effect of wheat stubble height on subsequent summer row crop yields.

Procedures
This study was conducted at the Southwest Research-Extension Center dryland station near Tribune, Kansas. From 2007 through 2015, corn and grain sorghum were planted into standing wheat stubble of three heights. Optimal (high) cutter-bar height is the height necessary to maximize both grain harvested and standing stubble remaining (typically around two-thirds of total plant height), the short cut treatment was half of optimal cutter-bar height, and the third treatment was stubble remaining after stripper header harvest. In 2015, these heights were 7, 14, and 20 in. In 2015, corn and grain sorghum were seeded at rates of 15,000 seeds/a and 40,000 seeds/a, respectively. Nitrogen was applied to all plots at a rate of 60 lb/a. Starter fertilizer (10-34-0 N-P-K) was surface dribbled off-row at a rate of 7 gal/a. Plots were 40 × 60 ft, with treatments ar-
ranged in a randomized complete block design with six replications. Two rows from the center of each plot were harvested with a plot combine for yield and yield component analysis. Soil water measurements were obtained with neutron attenuation to a depth of 6 ft in 1-ft increments at seeding and harvest to determine water use and water use efficiency. No biomass measurements were made for sorghum in 2015.

Results and Discussion
The 2015 growing season was above normal for precipitation with May having more than 6 inches. This produced above average yields for both corn and sorghum (Table 1-4). Corn yields (although quite variable) were 15% greater in high or strip-cut than low-cut wheat stubble. On average, corn yields were 10 bu/a greater when planted into high- or strip-cut stubble. Biomass production and water use efficiency were also greater with the taller stubble.

Grain sorghum yields in 2015 were greater in high-cut stubble than low-cut stubble primarily because of increased number of kernels/head (Table 3). When averaged across years from 2007 through 2015, the highest yields were obtained in the high-cut stubble but were not significantly greater than the other stubble heights. None of the other measured parameters for grain sorghum were affected by wheat stubble height except for greater water use efficiency in high-cut stubble.
Table 1. Corn yield, biomass, and yield components as affected by stubble height, Tribune, Kansas, 2015.

<table>
<thead>
<tr>
<th>Stubble height</th>
<th>Yield (bu/a)</th>
<th>Plant population (10^3 a)</th>
<th>Ear population</th>
<th>Biomass (lb/a)</th>
<th>Residue (oz)</th>
<th>1,000-seed weight (no/ear)</th>
<th>Kernels</th>
<th>WUE^1 (lb of grain/in. of water use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>102</td>
<td>15.4a</td>
<td>14.4</td>
<td>10565</td>
<td>5730</td>
<td>9.65</td>
<td>649</td>
<td>375</td>
</tr>
<tr>
<td>High</td>
<td>118</td>
<td>15.0b</td>
<td>14.0</td>
<td>11590</td>
<td>6014</td>
<td>10.62</td>
<td>659</td>
<td>412</td>
</tr>
<tr>
<td>Strip</td>
<td>120</td>
<td>15.6a</td>
<td>14.8</td>
<td>12150</td>
<td>6494</td>
<td>10.63</td>
<td>675</td>
<td>420</td>
</tr>
</tbody>
</table>

LSD _0.05_ = 46, 0.4, 3.0, 4212, 2998, 1.58, 140, 150

ANOVA (P > F)

<table>
<thead>
<tr>
<th></th>
<th>Stubble height</th>
<th>0.666</th>
<th>0.019</th>
<th>0.839</th>
<th>0.705</th>
<th>0.850</th>
<th>0.325</th>
<th>0.915</th>
<th>0.784</th>
</tr>
</thead>
</table>

^1 Water use efficiency (lb of grain/in. of water use).

Table 2. Corn yield, biomass, and yield components as affected by stubble height, Tribune, Kansas, 2007–2015.

<table>
<thead>
<tr>
<th>Stubble height</th>
<th>Yield (bu/a)</th>
<th>Plant population (10^3 a)</th>
<th>Ear population</th>
<th>Biomass (lb/a)</th>
<th>Residue (oz)</th>
<th>1,000-seed weight (no/head)</th>
<th>Kernels</th>
<th>WUE^1 (lb of grain/in. of water use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>72b</td>
<td>13.9</td>
<td>13.4</td>
<td>8739b</td>
<td>5329b</td>
<td>10.21</td>
<td>520</td>
<td>277b</td>
</tr>
<tr>
<td>High</td>
<td>82a</td>
<td>13.9</td>
<td>13.8</td>
<td>10021a</td>
<td>6148a</td>
<td>10.52</td>
<td>503</td>
<td>316a</td>
</tr>
<tr>
<td>Strip</td>
<td>82a</td>
<td>14.0</td>
<td>13.9</td>
<td>10040a</td>
<td>6165a</td>
<td>10.39</td>
<td>541</td>
<td>317a</td>
</tr>
</tbody>
</table>

LSD _0.05_ = 6, 0.5, 0.7, 693, 594, 0.32, 95, 23

ANOVA (P > F)

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>0.001</th>
<th>0.001</th>
<th>0.001</th>
<th>0.001</th>
<th>0.001</th>
<th>0.001</th>
<th>0.001</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stubble height</td>
<td>0.001</td>
<td>0.959</td>
<td>0.293</td>
<td>0.001</td>
<td>0.008</td>
<td>0.164</td>
<td>0.728</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Year × stubble height</td>
<td>0.966</td>
<td>0.989</td>
<td>0.972</td>
<td>0.703</td>
<td>0.312</td>
<td>0.769</td>
<td>0.920</td>
<td>0.948</td>
</tr>
</tbody>
</table>

^1 Water use efficiency (lb of grain/in. of water use).
Table 3. Sorghum yield and yield components as affected by stubble height, Tribune, Kansas, 2015.

<table>
<thead>
<tr>
<th>Stubble height</th>
<th>Yield (bu/a)</th>
<th>Head Population (10^3/a)</th>
<th>Biomass (lb/a)</th>
<th>Residue (oz)</th>
<th>1,000-seed weight (Kernels)</th>
<th>WUE (lb/grain/in. of water use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>109</td>
<td>55.0</td>
<td>-</td>
<td>-</td>
<td>0.96</td>
<td>1824b</td>
</tr>
<tr>
<td>High</td>
<td>120</td>
<td>55.6</td>
<td>-</td>
<td>-</td>
<td>0.94</td>
<td>2078a</td>
</tr>
<tr>
<td>Strip</td>
<td>105</td>
<td>54.0</td>
<td>-</td>
<td>-</td>
<td>0.91</td>
<td>1855b</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>14</td>
<td>8.1</td>
<td>-</td>
<td>-</td>
<td>0.09</td>
<td>201</td>
</tr>
</tbody>
</table>

ANOVA (P > F)
- Stubble height 0.102
- Head population 0.908
- Biomass -
- Residue -
- 1,000-seed weight 0.404
- Kernels 0.036
- WUE 0.247

1 Water use efficiency (lb of grain/in. of water use).

Table 4. Sorghum yield, biomass, and yield components as affected by stubble height, Tribune, Kansas, 2007-2015.

<table>
<thead>
<tr>
<th>Stubble height</th>
<th>Yield (bu/a)</th>
<th>Head Population (10^3/a)</th>
<th>Biomass (lb/a)</th>
<th>Residue (oz)</th>
<th>1,000-seed weight (Kernels)</th>
<th>WUE (lb/grain/in. of water use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>93</td>
<td>51.2</td>
<td>10326</td>
<td>5855</td>
<td>0.87</td>
<td>1934</td>
</tr>
<tr>
<td>High</td>
<td>99</td>
<td>52.8</td>
<td>10938</td>
<td>6212</td>
<td>0.88</td>
<td>2012</td>
</tr>
<tr>
<td>Strip</td>
<td>95</td>
<td>52.5</td>
<td>10484</td>
<td>5891</td>
<td>0.86</td>
<td>1911</td>
</tr>
<tr>
<td>LSD 0.05</td>
<td>5</td>
<td>2.7</td>
<td>650</td>
<td>583</td>
<td>0.02</td>
<td>134</td>
</tr>
</tbody>
</table>

ANOVA (P > F)
- Year 0.001
- Stubble height 0.014
- Year × stubble height 0.992

1 Water use efficiency (lb of grain/in. of water use).
2 2015 values not included in average - no samples collected.