A series of vectors for fungal transformation

J. A. Sweigard
Central Research and Development

F. Chumley
Central Research and Development

A. Carroll
Central Research and Development

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a [Creative Commons Attribution-Share Alike 4.0 License](https://creativecommons.org/licenses/by-sa/4.0/).

Recommended Citation

This Regular Paper is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
A series of vectors for fungal transformation

Abstract
We report a new fungal selectable marker that confers resistance to chlorimuron ethyl, a sulfonylurea herbicide. This gene as well as genes that confer resistance to hygromycin and bialaphos have been engineered to be compact and to eliminate sites for most common restriction enzymes. These three selectable markers have been used to construct a series of vectors for fungal transformation.

Authors
J. A. Sweigard, F. Chumley, A. Carroll, L. Farrall, and B. Valent

This regular paper is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol44/iss1/19
A series of vectors for fungal transformation

Jim Sweigard, Forrest Chumley, Anne Carroll, Lennie Farrall, and Barbara Valent - Central Research and Development, DuPont, P. O. Box 80402, Wilmington, DE 19880-0402 USA

We report a new fungal selectable marker that confers resistance to chlorimuron ethyl, a sulfonylurea herbicide. This gene as well as genes that confer resistance to hygromycin and bialaphos have been engineered to be compact and to eliminate sites for most common restriction enzymes. These three selectable markers have been used to construct a series of vectors for fungal transformation.

We have modified three dominant selectable markers for fungal transformation. First, we cloned a sulfonylurea resistant allele of the Magnaporthe grisea ILV1 gene using the Saccharomyces cerevisiae ILV2 gene as a heterologous probe. These genes encode acetolactate synthase, an enzyme involved in isoleucine and valine synthesis. Sulfonylureas (specifically chlorimuron ethyl, the active ingredient of the herbicide Classicreg) inhibit acetolactate synthase. The sulfonylurea resistant allele of M. grisea ILV1 has been subcloned as a 2.8 kb fragment and modified by the elimination of eight restriction enzyme sites (GenBank AF013601). Second, a chimeric gene for bialaphos resistance (Pall and Brunelli 1993 Fungal Genet. Newsl. 40:59-63) has been further modified by eliminating five restriction enzyme sites and by removing the transcription terminator (GenBank AF013602). Third, a chimeric gene conferring hygromycin resistance (GenBank) has been reported previously (Carroll et al. 1994 Fungal Genet. Newsl. 41:22) and is included here for completeness. All three selectable markers have had SalI sites introduced at both ends.

The three selectable markers were cloned into various plasmids both within and outside the polylinker (Table 1). First, the genes were cloned as SalI fragments into the polylinker of pUC, pBluescriptII, and pBC vectors. They were also cloned as SalI fragments into the XhoI site of a modified polylinker in pBluescript II and pBC (pCB1519 and pCB1520, respectively) where the XhoI site is flanked on both sides by SmaI sites. Second, the selectable markers were cloned into common cloning vectors outside the polylinker, thus leaving the lacZ gene intact. Most of the restriction enzyme sites in these polylinkers are unique (Table 2). We find that these vectors allow flexible and facile cloning options due to the presence of three fungal selectable markers available as many different restriction fragments including blunt fragments, a range of polylinker choices with blue/white screening, and a choice of bacterial selection for ampicillin or chloramphenicol resistance. All of these plasmids have been deposited in the FGSC.

We have successfully used these vectors to transform M. grisea as described previously for hygromycin selection (Sweigard et al. 1995 Plant Cell 7:1221-1233). Defined complex medium [yeast nitrogen base without amino acids (Difco) 1.7 (g/l); asparagine, 2; NH4NO3, 1; glucose, 10; pH to 6.0 with Na2HPO4) was used to select for bialaphos and sulfonylurea resistance. Bialaphos (25 ug/ml) and chlorimuron ethyl (100 ug/ml) were dissolved in water and dimethylformamide, respectively, and added to media after autoclaving. Chlorimuron ethyl can be purchased from Chem Service, P. O. Box 3108, West Chester, PA 19381-3108, 610-692-
We have not tested whether the formulated herbicide Classicreg. can be used for selection instead of the technical material.

Table 1. Plasmids with bialaphos, hygromycin and sulfonyleurea resistance

<table>
<thead>
<tr>
<th>Base plasmid & cloning site for fungal selectable marker</th>
<th>Bialaphos</th>
<th>Hygromycin</th>
<th>Sulfonyleurea resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC19& or pUC118*/SalI</td>
<td>pCB1517*</td>
<td>pCB1003*</td>
<td>pCB1528*</td>
</tr>
<tr>
<td>pBluescript II SK-/- SalI</td>
<td>pCB1635</td>
<td>pCB1636</td>
<td></td>
</tr>
<tr>
<td>pCB1637(NOT AVAILABLE)</td>
<td>pCB1546</td>
<td>pCB1490</td>
<td></td>
</tr>
<tr>
<td>pCB1551</td>
<td>pCB1524*</td>
<td>not</td>
<td></td>
</tr>
<tr>
<td>pCB1519/XhoI</td>
<td>pCB1525*</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>pCB1520/XhoI</td>
<td>pCB1526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCB1550</td>
<td>pCB1527</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selectable marker in polylinker

<table>
<thead>
<tr>
<th>Vector Polylinker</th>
<th>Polylinker Restriction EnzymesB</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK or KS in pBC</td>
<td>SstI, SstII*, NotI, XbaI, SpeI, BamHI, Smal, PstI, EcoRI, EcoRV</td>
</tr>
<tr>
<td>HindIII</td>
<td>ClaI, SalI, XhoI, ApaI, KpnI</td>
</tr>
</tbody>
</table>

AReported previously (Carroll et al. 1994 Fungal Genet. Newsl. 41:22)

BDigestion of these plasmids with Smal yields the respective selectable marker as a blunt restriction fragment

C,DThe hygromycin resistant equivalents of these plasmids were not constructed because a blunt fragment can be obtained by HpaI digestion of pCB1003 and pCB1004, respectively.

EpBluescript II and pBC, Stratagene; pLitmus, New England Biolabs; pCB\#, this paper. All the base plasmids are ampicillin resistant except pBC KS- and pCB1520 which are chloramphenicol resistant.

FSelectable marker obtained as Smal fragment from pCB1525 or pCB1550 or as HpaI fragment from pCB1004.

GSelectable marker cloned as SalI fragment (half-site filled in) into the BclI site (half-site filled in)
These are the plasmids in the second part of Table 1

All restriction enzyme sites in the vector polylinker are unique for the entire plasmid including the fungal selectable marker except for those sites indicated where a restriction site is also present in the fungal selectable marker for bialaphos (*), hygromycin (#), or sulfonorylurea (^) resistance.