Steam based post-process pasteurization of beef salami for control of Listeria monocytogenes

V.S. Gill
H. Thippareddi
Randall K. Phebus
James L. Marsden

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2002 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Steam based post-process pasteurization of beef salami for control of Listeria monocytogenes

Abstract
We evaluated the destruction of Listeria monocytogenes on surfaces of artificially inoculated, vacuum-packaged beef salami by steam pasteurization (Stork RMA-Protecon Post-process Pasteurizer). Beef salami was inoculated with L. monocytogenes (initial concentrations of 4.36 log10 CFU/cm² at the end and 4.49 at the middle), then pasteurized at 185, 194, or 203°F for 2 or 4 min. Only about 0.11 log10 CFU/cm² (detection limit) L. monocytogenes survived after pasteurization at 203°F for 2 and 4 min, for a "kill rate" of over 99.99%. Post-packaging pasteurization reduces the threat of L. monocytogenes on the surfaces of cooked meat products.

Keywords
Cattlemen's Day, 2002; Kansas Agricultural Experiment Station contribution; no. 02-318-S; Report of progress (Kansas State University. Agricultural Experiment Station and Cooperative Extension Service); 890; Beef; Post-processing pasteurization; Beef salami; Listeria monocytogenes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
V.S. Gill, H. Thippareddi, Randall K. Phebus, James L. Marsden, and Curtis L. Kastner

This Research Report article is available in Kansas Agricultural Experiment Station Research Reports: https://newprairiepress.org/kaesrr/vol0/iss1/326
Summary

We evaluated the destruction of *Listeria monocytogenes* on surfaces of artificially inoculated, vacuum-packaged beef salami by steam pasteurization (Stork RMA-Protecon Post-process Pasteurizer). Beef salami was inoculated with *L. monocytogenes* (initial concentrations of 4.36 log$_{10}$ CFU/cm2 at the end and 4.49 at the middle), then pasteurized at 185, 194, or 203°F for 2 or 4 min. Only about 0.11 log$_{10}$ CFU/cm2 (detection limit) *L. monocytogenes* survived after pasteurization at 203°F for 2 and 4 min, for a “kill rate” of over 99.99%. Post-packaging pasteurization reduces the threat of *L. monocytogenes* on the surfaces of cooked meat products.

(Key Words: Post-Processing Pasteurization, Beef Salami, *Listeria monocytogenes*.)

Introduction

Listeria monocytogenes, an important cause of foodborne diseases in humans, contaminates a variety of meats. It can easily aerosolize, making it easy to spread, and can survive and grow at refrigeration temperatures.

Irradiation and thermal-based pasteurization are being investigated to reduce its risk in ready-to-eat (RTE) meats. Because cooking during production of RTE meats eliminates most harmful pathogens, research is focusing on post-packaging pasteurization. Our objective was to evaluate the effectiveness of the Stork Post-process Pasteurizer in reducing or eliminating *L. monocytogenes* on the surface of packaged RTE meat.

Experimental Procedures

Five strains of *L. monocytogenes* (101 M, 108 M, 109, serotype 4c ATCC, and 3 ATCC) were diluted to produce a mixed inoculum concentration of about 1×10^9 CFU/ml.

Retail packages (300 g) of beef salami were procured and stored at 40°F until pasteurization. Beef salami was placed on a sterile stainless steel wire rack held in a stainless steel trough in a “biocontainment” chamber, and was mist inoculated with the 5-strain *L. monocytogenes* inoculum. The inoculated products were placed in a laminar flow cabinet for one hour at room temperature to allow microbial attachment.

All inoculated products were then vacuum-packaged and pasteurized at the Kansas State University Aseptic Processing Laboratory. Inoculated packages were surface pasteurized in a Stork RMS-Protecon Post-Packing Pasteurization Chamber for either control, 2, or 4 min at 185, 194, or 203°F.

Immediately after pasteurization, all packages were immersed in ice water for 10 min, then sampled. Packages were surface sampled by removing the casings from the end (1.5 cm) caps from both sides and
combining both end caps from one sausage to give the “end” sample. The rest of the casing served as the middle sample.

The end and middle samples from beef salami were diluted with 0.1% sterile peptone water (PW), stomached for 2 min, serially diluted in PW and plated on Modified Oxoid Agar (MOX) (Difco Laboratories, Detroit, MI) and incubated at 98.6°F for 24 h. Colonies were counted and reported as log_{10} CFU/cm². Three replications were performed for each treatment.

Results and Discussion

Mean inoculum levels were 4.26 log_{10} CFU/cm² for end and 4.49 for middle portions. Pasteurization of salami at 185°F for 2 min reduced surface *L. monocytogenes* by about 3.65 (end) and 3.18 (middle) log_{10} CFU/cm², while pasteurization at 185°F for 4 min reduced *L. monocytogenes* by 4.26 log_{10} CFU/cm² for both end and middle portions. Pasteurization at 194°F for 4 min achieved similar results. Only 0.11 log_{10} CFU/cm² (detection limit) *L. monocytogenes* were recovered from middle and end surfaces of salami pasteurized at 203°F for 2 and 4 min, representing a “kill rate” of over 99.99%.