Use of conidial separation-defective strains

C. P. Selitrennikoff

California State University

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

Use of conidial separation-defective strains

Abstract
Use of conidial separation-defective strains

This methods for teaching is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol21/iss1/7
Selitrennikoff, C. P. Use of conidial separation defective strains.

The problem of contamination of laboratories by Neurospora meroconidia is well known and has prompted the use of morphological mutants or even other fungi (e.g., Sordaria) for class experiments (Barratt 1965 NN:10:33; Gardner and Mertens 1970 Genetics Laboratory Investigations, Burgess). I suggest the use of conidial separation defective strains (csp-1 and csp-2). These mutants produce chains of conjoined conidia, yet are comparable in macroscopic appearance to normal cultures. The virtual absence of free conidio formed by these strains permits their experimental manipulation (even student loop transfers) without the fear of aerial dispersal of conidia. Prototrophic and auxotrophic cultures containing the csp-1 and csp-2 mutations are available from the Fungal Genetics Stock Center.

- - - Department of Biological Sciences, California State University, Fullerton, CA 92634.


Proliferation and some questions: 1) Is each morphological mutant gene recessive to its wild-type allele? 2) How many loci do the 4 mutant genes i.e., UCLA37, F5591, F5590 and UCLA 101 represent? All groups independently performed the heterokaryon analysis with the results indicated in Table 1 and concluded that F5590, F5591 and UCLA 101 were functional alleles, UCLA37 was a separate locus, and all were recessive. The above 10 strains are available from the Fungal Genetics Stock Center.

This work was supported in part by a Predoctoral traineeship to CPS. - - - Department of Biological Sciences, California State University, Fullerton, CA 92634.

Millington-Ward, A. M. A simple explanation for the 66.7% limiting values in tetrad analysis.

The one allele of csp-1 (UCLA37) and the three alleles of csp-2 (FS591, FS590, UCLA 101) were each crossed to nic-2 (43002) and nit-3 (YS1881) and heterokaryon compatible double mutant cultures isolated (Selitrennikoff, in preparation). These compatible strains can be used in a classical "cis-trans" test requiring only the tap test to detect the presence or absence of complementation. To illustrate, we present an experiment which was performed by the Fall 1973 Genetics Laboratory students at California State University at Fullerton. Each group of 3 students was given agar slant cultures (Vogel's medium N + 1.5% sucrose + 50 pg/ml nicotinamide) of the following strains (each tube was labeled with only the allele number and the appropriate auxotrophic locus designation) and 20 sterile slants of Vogel's N + 1.5% sucrose minimal medium.

1. nic-2 A
2. nic-3 A
3. csp-1 (UCLA37), nic-2 A
4. csp-1 (UCLA37), nic-3 A
5. csp-2 (FS590), nic-2 A
6. csp-2 (FS590), nic-3 A
7. csp-2 (FS591), nic-2 A
8. csp-2 (FS591), nic-3 A
9. csp-2 (UCLA 101), nic-2 A
10. csp-2 (UCLA 101), nic-3 A.

Table 1. Heterokaryotic cultures were formed by co-inoculation of aerial hyphae onto minimal medium. After 7 days growth at 25°C, tubes were scored by the tap test.

<table>
<thead>
<tr>
<th>STRAIN</th>
<th>nic-2</th>
<th>UCLA37 nic-2</th>
<th>FS590 nic-2</th>
<th>FS591 nic-2</th>
<th>UCLA10 nic-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>nic-3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>UCLA37</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>FS590</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FS591</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UCLA100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nic-3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

The students were asked to design their own experimental protocol in order to obtain data which would allow them to answer these questions: 1) Is each morphological mutant gene recessive to its wild-type allele? 2) How many loci do the 4 mutant genes i.e., UCLA37, F5591, F5590 and UCLA 101, represent? All groups independently performed the heterokaryon analysis with the results indicated in Table 1 and concluded that F5590, F5591 and UCLA 101 were functional alleles, UCLA37 was a separate locus, and all were recessive. The above 10 strains are available from the Fungal Genetics Stock Center.

This note is in response to Griffiths and Penson (1973 NN:20: 37). Suppose a box contains two black and two white balls, which are to be transferred to a linear sock in turn and without looking (Fig. 1). At the first dip into the box, there is a 50:50 chance of taking a black or a white ball. Suppose a black ball is transferred to the tube (Fig. 2). There are now two white and one black ball remaining in the box. Therefore, at the second transfer, there is twice as much chance of taking a white as there is of taking a black ball. There is, therefore, twice as much chance of forming a second-division segregation as there is a first. There are, therefore, under random segregation, twice as many second-division segregation asci (4/6) as there are first (2/6). Therefore, under random conditions, there are 4/6 (66.7%) second-division segregation asci.

- - - Genetisch Laboratorium, Der Rijksuniversiteit, Kaiserstraat 63, Leiden, The Netherlands.