Impact of Communication Apprehension and Communication Skills Training on Interaction in a Distance Education Course

Kathleen Dodge Kelsey

Recommended Citation

Follow this and additional works at: http://newprairiepress.org/jac
Impact of Communication Apprehension and Communication Skills Training on Interaction in a Distance Education Course

Abstract
The importance of providing students with skills necessary for success in distance education classrooms is uncontested; however, few universities have done so. This case study sought to answer two questions: (a) What was the impact of communication apprehension (CA) on distance education students who experience the trait; and (b) What was the impact of a skills training session on interaction in a distance education course? Findings indicate that communication apprehensive students could not be motivated to interact regardless of interventions; however, non-CA students did benefit from the skills training session. An outline for a recommended skills training session based on recommendations from the literature and this study is included along with implications for educational practice.

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This article is available in Journal of Applied Communications: http://newprairiepress.org/jac/vol84/iss4/1
impact of communication apprehension and communication skills training on interaction in a distance education course

Kathleen Dodge Kelsey

Abstract

The importance of providing students with skills necessary for success in distance education classrooms is uncontested; however, few universities have done so. This case study sought to answer two questions: (a) What was the impact of communication apprehension (CA) on distance education students who experience the trait; and (b) What was the impact of a skills training session on interaction in a distance education course? Findings indicate that communication apprehensive students could not be motivated to interact regardless of interventions; however, non-CA students did benefit from the skills training session. An outline for a recommended skills training session based on recommendations from the literature and this study is included along with implications for educational practice.

Interpersonal interaction in the learning context has been touted as the Holy Grail of effective education. Scholars (Bandura, 1977; Dewey, 1938; Holmberg, 1983) have demonstrated the importance of interaction theoretically and empirically in that learning is positively correlated to interaction. Nevertheless, there are a number of learners who choose not

Key Words

Southern region agricultural communications undergraduate programs; teaching; accreditation.

References

Publication information

Kathleen Dodge Kelsey is an assistant professor at Oklahoma State University, Department of Agricultural Education, Communications, and 4-H Youth Development. Funding for this study was provided by the United States Department of Agriculture, Higher Education Challenge Grants Program. The author is not a member of ACE at this time.
to interact overtly with peers and instructors. These learners experience a trait-based condition known as communication apprehension (CA) (McCroskey, 1982). There is a strong negative correlation between CA and learning outcomes in the traditional classroom at all grade levels (Aitken & Neer, 1992; Allen & Bourhis, 1996; Bourhis & Allen, 1992); however, the research surrounding CA in the distance education context is limited.

Distance education brings with it unique circumstances that limit both the assets and liabilities of interpersonal interaction. Distance students can learn alone in correspondence-type courses or within groups, using interactive compressed video (ICV) technology. ICV technology permits synchronous two-way audio and video transmission, allowing distance educators to incorporate fully interactive design techniques into the teaching and learning environment. Using ICV technology, distance education courses can resemble traditional campus-based courses.

Researchers (Bauer & Rezabek, 1992; Boverie, Murreil, Lowe, Zittle, Zittle, & Gunawardena, 1997; Sholdt, Zhang & Fulford, 1995; West & Pearson, 1994) have hypothesized that fully interactive classrooms will lead to an increase in learning outcomes in terms of quantity and quality of questions asked and answered. As interactive technology is infused in the traditional classroom environment, students’ skills in using the technology must be upgraded for effective communication to occur (Hillman, Willis & Gunawardena, 1994).

Distance educators have recommended communication skills training for distance education students in order to provide them with necessary communication tools for success in technology-rich learning environments as participating in technology-laden classrooms can be intimidating for students and serve to inhibit interaction (Davie, 1989; Gibson, 1998; Hillman, Willis, & Gunawardena, 1994; Nahl, 1993). In one study, the process of going on-camera inhibited 33% of the students in an ICV classroom (Nahl, 1993). Students’ concerns diminished by one-half toward the end of the semester due to a natural desensitization toward the technology. Nevertheless, students who participated in the study spent the majority of their learning time in a state of anxiety related to using the technology.

in teaching in the various surveyed programs. (The mean number of faculty who taught at the programs was just under two per program, with many having only one faculty member involved in teaching.) Without a doubt, all programs depend on a small number of faculty members to coordinate, administer and teach the agricultural communications programs surveyed.

It might be asked how robust an agricultural communications program really can be if only one or two faculty members coordinate, administer and teach a program. It was apparent that many of the faculty members involved in teaching also had other responsibilities, too. The question we might ask from these responses is how well can faculty members teach courses when the demands for teaching are high, but the FTE’s allocated for teaching are so low, especially in programs with a large number of students?

The survey indicated a strong level of faculty frustration associated with the perceived low status of their programs as well as actual low levels of support (funding, space, personnel), recognition, and respect. All but one of the program respondents indicated that their program was in the bottom half in terms of support, relative to other programs in their institution. And fully one half of those responding to the question said that their program was in the bottom quarter in terms of support, relative to other programs at their institution. That only one program of all of those surveyed considers itself to be in the top half of programs at its institution, relative to other programs, is very telling. The need for accreditation (discussed below), the need for support of all kinds, and the "lack of understanding about what agricultural communications is as a field" (cited as a national challenge), are all related to the perceived low standing of agricultural communications programs in colleges of agriculture.

The low level of perceived support may be due in some measure to the rapid growth many of the programs are experiencing. If so, then, it may be that institutional support will catch up to their growth over time. The fact that two-thirds of respondents believed that a national accreditation program would help their program may be a response to their perceived low status of programs, coupled with high demands on the faculty.

A national accreditation process could be somewhat prob-
Challenges to Programs

Issues cited in open-ended questions at the end of the survey—What are the biggest challenges facing your program? What are the challenges facing ag communications programs nationally? and where do you see your program five years from now?—were interesting. All nine respondents provided comments such as "lack of understanding about what ag communications is," "the image problem," and "poor attitudes of journalism faculty and students toward ag communications" which could be addressed by national accreditation. Challenges that programs face individually—administration turf battles, understaffing, student recruitment, wearing too many hats as faculty members—might also be ameliorated by national standards in such areas as appropriate funding levels for curriculum and professional development and faculty/student ratios, for example.

Because a majority of agricultural communications programs in the southern states see themselves as increasing in size over the next five years, faculty find themselves challenged by all of the issues related to that growth. From simple concerns—such as identifying good textbooks and making contacts for internships and job placement—to complex issues—such as increased funding for technology and maintaining critical thinking skills—agricultural communications faculty face perhaps their most challenging decade since the inception of the field.

Conclusions and Discussion

This study found that the undergraduate agricultural communications programs throughout the southern United States are growing and are expected to continue to grow for at least the next five years. This seemingly rapid growth may be responsible for the wide-ranging number of faculty to student ratios, from 1:10 to 1:77. The rapid growth also may be responsible for the small number of faculty members involved benefit their programs. They believe that accreditation would do the following: "provide leverage with the administration" in garnering much-needed support; "bolster the image" of agricultural communications in relation to journalism and communications programs on campus; "improve the identity" of ag communications within the college; and "provide respect and esteem" to the field through the establishment of standards.

Hopf and Ayres (1992) recommended that students should be supported in learning cognitive, affective, and technological skills necessary for interacting with others through communication technologies. As few universities have provided skills training to distance students, there is a lack of empirical data regarding the effectiveness of such efforts.

Context of the Case

This study was situated within an animal genetics course offered by Cornell University (CU) to five remote sites in the Northeast during fall semester, 1998. The course was designed to expose students to the animal genetics industry by means of presenting current research being conducted in the field. Eleven guest speakers from across the United States and Canada presented the seminars live to the CU cohort. The other five remote sites received the lecture via ICV technology. Each of the five remote sites employed a local site facilitator (all of whom were animal science professors) who served as instructor of record. The site facilitators were primarily responsible for managing communications between sites.

Seventy-three students (14 men and 59 women) participated in the study. The average age of the group was 21.7 years, and the average number of years in college was 3.6. None of the students had participated in a distance education course prior to this one, thus their experience with the technology was new.

The students had the opportunity to participate in five types of interaction essential for optimal learning (Moore, 1989; Hillman, Willis, & Gunawardena, 1994). They were: (a) face-to-face interactions between students and site facilitators at each campus, (b) ten minutes at the end of each lecture for a live question and answer session, (c) E-mail, (d) a discussion board, and (e) luncheons with guest speakers (provided at the CU only). All the students who participated in this study also had access to an extensive Internet web site.

The researcher presented a skills training session to the CU site and one remote site early in the semester. The focus of the skills training session was to teach students and instructors how to interact more effectively within a distance education course (see Appendix for outline of skills training session). The other four remote sites did not receive any training.
Methods

This case study was guided by two research questions.

RQ 1: What was the impact of communication apprehension on distance education students who experience the trait, and

RQ 2: What was the impact of a skills training session on interaction in a distance education course?

Data were collected using Likert-type surveys, interviews, and participant observations at all six sites (Merriam, 1998; Stake, 1995; Yin, 1984). Site facilitators were interviewed for methodological triangulation concerning the CA trait among their students and the interaction variable. Interviews were audiotaped, transcribed, and coded following Miles and Huberman’s (1994) suggestions for qualitative data analysis. Videotaped recordings of all lectures were analyzed for quantity of interactions among participants.

To determine the presence of communication apprehension among the population, two survey questionnaires were administered to students at all six sites during the first two weeks of the course. The Personal Report of Communication Apprehension (PRCA-24), which consisted of 24 Likert-type questions, was selected because it was the most widely used measure of CA and because its reliability and construct, predictive, and content validity were well established (alpha reliability = 0.97) (McCroskey, 1978; McCroskey, Beatty, Kearney, & Plax, 1985).

The Willingness to Communicate scale (WTC) was also administered to students at all six sites as a multiple-method technique for determining students’ willingness to communicate (the antithesis of CA). The WTC scale is a 20-item, probability-estimate scale with an estimated reliability of 0.92 (McCroskey, 1992).

The skills training session was offered face-to-face by the researcher at two of the six participating campuses. After the pre-enrollment period was over, students at Cornell University were randomly separated into two groups where one-half of these students were invited to participate in the skills training session. Nine out of ten students at the chosen remote site attended the skills training session.

The impact of the skills training session on student interac-
tion was assessed in two ways. Participants filled out a Likert-type survey developed for this study immediately after the session. Students were also queried during the face-to-face interviews as to the overall impact of the skills training session at the end of the semester.

Findings

Impact of Communication Apprehension on Distance Education Students

Seven students self-identified as having the CA trait using the PRCA-24 and the WTC scale (9.5% of the population). The students who scored high for CA on the PRCA-24 and low on the WTC ($r = -0.630$) behaved and responded in ways that were consistent with the literature for CA individuals (McCroskey, 1977).

During face-to-face interviews, the CA students reported that being communication apprehensive was a barrier to interactions, not only in this course but also in all their courses. On no occasion was being CA considered a benefit in the classroom. All seven students had an acute awareness of their CA trait and the negative role that it played in their learning endeavors throughout their lives in terms of speaking inside and outside of class with instructors and peers. Direct quotations of the seven CA student interviews are included to support these findings:

Interviewer: As far as communication apprehension is concerned, is this getting in the way of your learning?

Student 71: In a lot of lecture classes I will have a question about a part of it and I could ask it right then and get it cleared up, but instead I don’t. That is a big problem.

Student 2: Yeah it’s a barrier in my learning but I have found other ways to deal with it so I don’t treat this class any different than any other class.

CA students had developed coping mechanisms for getting their academic needs met without having to interact personally with other students or instructors. In order to avoid oral communication with peers and instructors, the CA students consulted textbooks, utilized the library, and searched the Internet to find answers to their questions.

Table 1 Undergraduate Agricultural Communications Programs and the Number of Full-time Equivalent Faculty Members Assigned in 1999.

<table>
<thead>
<tr>
<th>University</th>
<th>Faculty (FTEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auburn</td>
<td>0</td>
</tr>
<tr>
<td>Clemson University</td>
<td>*</td>
</tr>
<tr>
<td>Louisiana State University</td>
<td>*</td>
</tr>
<tr>
<td>Mississippi State University</td>
<td>*</td>
</tr>
<tr>
<td>North Carolina State University</td>
<td>1</td>
</tr>
<tr>
<td>Oklahoma State University</td>
<td>.75</td>
</tr>
<tr>
<td>Texas A & M</td>
<td>1</td>
</tr>
<tr>
<td>Texas Tech</td>
<td>1.5</td>
</tr>
<tr>
<td>University of Arkansas</td>
<td>1</td>
</tr>
<tr>
<td>University of Florida</td>
<td>2.6</td>
</tr>
<tr>
<td>University of Georgia</td>
<td>.5</td>
</tr>
<tr>
<td>University of Kentucky</td>
<td>.5</td>
</tr>
<tr>
<td>University of Tennessee</td>
<td>*</td>
</tr>
<tr>
<td>Virginia Polytechnical Institute</td>
<td>*</td>
</tr>
</tbody>
</table>

*denotes no active undergraduate agricultural communications program.

doctorates in education; four are associate professors with Ph.D. degrees, four are assistant professors with Ph.D. degrees; and three are called "instructors" with master's degrees.

Quality of Preparation

Respondents were asked how well their programs prepare graduates in three areas: applied professional skills, critical thinking skills, and graduate or professional school. All nine programs provided data and the “applied professional skills” area received the highest ranking, with six schools indicating they prepared students "very well" and two more indicating they prepared students "well." Six respondents reported their
Five of the seven CA students reported that being in a distance-learning course that required students to present themselves on camera for asking questions inhibited them from doing so. The CA students adopted a voyeuristic posture in the class by preferring to watch and listen to others interact:

Interviewer: Do you ask questions during the live broadcast?

Student 38: No! No way! First of all I don’t want my face on the huge screen, and I don’t ask questions. I don’t ask questions (in classes) that aren’t distance learning either. I’m just not comfortable with that.

CA students reported that they were as interested and motivated by the course content as non-CA students; however they expressed no desire to actively participate in the interactive features of the course (student photo gallery, post-lecture question and answer session, discussion board, and E-mail). They expressed a need to get in and get out of the learning environment as quickly and efficiently as possible without undue interaction with others. CA students enjoyed being present in the classroom, but clearly they did not want to participate orally. They were dissatisfied if there were no questions asked during the question and answer session but would not ask questions themselves. They wanted to be part of the learning environment but not co-creators of it:

Interviewer: What learning resources have you used for this class?

Student 2: I’ve been on the web. I’ve looked at the discussion board. I did put a question up there because I didn’t want to say it in class. I haven’t responded to anything (on the discussion board) though.

Peers and site facilitators at all six sites reported during the interviews that CA students were invisible to them. In fact one student interviewed did not remember that a CA classmate was in the class with her when there were only five students in her section. When questioned about her peer, she began to remember her, but she could not remember her name. Both students attended class regularly. When asking a site facilitator about his cohort, he remarked that he did not think that any of his students were CA. After continued probing on the topic, he recalled a student who did not say much. The student’s pres-established program” to “40 students.” The mean was 11.5, with most programs falling within the 8 to 12 range.

Respondents also were asked to provide the number of agricultural communications graduates from last year, who were now employed within the field. Of the total of 92 students graduated from the eight established agricultural communications programs, 41 are employed in agricultural communications work; 19 had accepted jobs in some other aspect of agriculture. Slightly less, 16, had applied to or been accepted into graduate school. And 14 of the 92 found employment outside both agriculture and communications. (Although respondents said they graduated 92 students, they could account for only 90.)

Programs’ Foci

Respondents were asked to characterize their program’s preparation of students in these three areas: program focuses primarily on teaching professional skills; program primarily teaches broad-based critical thinking skills; and the program provides an equal combination of both professional and critical thinking skills. The nine respondents fell nearly equally into the professional skills category (5) and into the both "professional skills" and "critical thinking skills" category (4).

When asked how many agricultural courses are taught within each program, responses from the nine respondents ranged from none to ten, with the mean just under five. In response to the companion question “How many different instructors teach these courses?” a narrower range of responses (from one to four) was indicated, with the predominant response as two. The mean was just under two.

The Faculty

The survey asked how many full-time equivalent faculty (FTE) members teach in the agricultural communications program (Table 1). Responses ranged from 0.5 faculty members to 2.6. Faculty-to-student ratios (for programs with faculty members assigned to teaching) ranged widely from 1:10 to 1:77, for eight respondents with faculty teaching courses.

Thirteen faculty members were listed as teaching agricultural communications. Of those, two are full professors, with
their programs; five other states responded that they had no current program. The surveys were returned to the researchers via E-mail, and responses were tabulated.

Findings

All of the nine respondents indicated that their programs were affiliated with colleges of agriculture. Even though several had names somewhat different from that, all colleges mentioned had “agriculture” in the title. Similarly, all the degree programs were called either "agricultural communications" or "agricultural journalism."

Where Programs Are Housed

Regarding the department that houses their program, the predominant response (4) was that it is part of another academic department; two each were either aligned with an affiliated program or unit or were in a stand-alone program; and one was part of an agricultural communications service unit. Seven affiliated in some manner with an academic unit were part of an agricultural education or Extension education department. One program was simply part of the college of agriculture. (This last one appears to be a topical major offered by the college, in that no agricultural communications courses are taught.)

Enrollment/Graduation Trends

The number of students majoring in agricultural communications varied widely at the nine institutions, from 9 students to 115 students. The mean number was 32 students per department.

Eight of the nine respondents indicated that their enrollment had increased during the past five years, with one indicating that enrollment remained steady. (A newly established department had no graduates to report.) Further, six respondents indicated that their enrollment would grow in the next five years; three indicated that they anticipated that enrollment would remain steady. No respondent believed their program’s enrollment was likely to decrease.

Respondents were asked how many students graduated from their agricultural communications programs in the previous year (1998-1999). The range from nine respondents was fairly substantial with from “none graduated from a newly

ence was not deeply imprinted on his memory when recalling his cohort. He was not sure why this was and, when discussing this student, he had little idea of her personhood; whereas, he spoke confidently about his other four students.

CA students reported that they enjoyed vicarious interactions by listening to the speakers and learning from them; however, actual interaction was limited. When asked during the interviews what CA students liked most about the course, many cited the variety of speakers and the content that was covered.

Impact of the Communication Skills Training Sessions on Participants’ Survey Results

Immediately following both skills training sessions, participants were given a Likert-type survey evaluation. The evaluation addressed certain aspects of the session including perceptions of anticipated interaction during the course. One-third of the CU students who participated in the skills training session said that they had positively changed the way they felt about interacting in class as a result of the session, and one-third predicted that they would increase the amount of interaction that they would engage in during class. Fifty percent were neutral and 14% disagreed with the statement.

Sixty percent of the CU students reported having anxiety about being seen on camera and 51% reported having anxiety about speaking to others through the IVC system. Only 18% reported that the session helped them to overcome their anxiety about being seen on camera, and 22% reported that the session helped them overcome their anxiety about speaking to others through the IVC system.

The majority of reported criticisms from CU student evaluations were that participants did not have the opportunity to actually practice using the IVC technology. The CU students stated they would have liked to experience interacting with the IVC technology. By the time the skills training session was delivered at CU, students had participated in two seminars that were linked with remote sites. The researcher assumed that the CU students would have absorbed the milieu of the IVC technology by that time; therefore, practice with the technology was not simulated during the session as was done for the remote site students.
The skills training session delivered to the remote site students was more effective in terms of changing their attitudes and reducing their anxiety than the session delivered to the CU students. Sixty-four percent of remote site students reported having anxiety about being seen on camera and about speaking to others through the ICV system. Thirty-six percent of the remote site students reported that the session helped them to overcome their anxiety about being seen on camera, and 73% percent of the remote site students reported that the session helped them to overcome their anxiety about speaking to others through the ICV system. Twenty-seven percent of remote site students said they had changed the way they felt about interacting in class as a result of the skills training. 18% predicted they would change the way they interacted in class, 64% were neutral, and 9% disagreed with the statement.

Interview Results

Nine of the 22 students who participated in the CU skills training session were interviewed at the end of the semester regarding the impact of the skills training session. Of the nine, three students experienced the CA trait. All of the remote site students who participated in the skills training were interviewed and one experienced the CA trait.

None of the students who participated in the study had taken a distance education course in the past; thus the format and delivery of the course was new to them. Students who participated in the interviews reported that the overall impact of the training session was to expose them to the technology and to reduce anxiety surrounding its use. As a result of the skills training session, students were ready to focus on the content of the course and not the technology that surrounded them. The ICV system that sat in the classroom was demystified, thus creating a seamless transition between speaker and student.

However, all participants who took the skills training session were asked during the interviews if the material covered in the training session increased their desire to interact with instructors and other students. In terms of increased interaction, interviewees reported that the training session had a marginally positive effect on non-CA students and no effect on CA students. The skills training session did serve to heighten all typical four-year bachelor’s degree program. Therefore, they argue that agricultural communications curricula should be flexible with opportunities for students to specialize in specific areas of agriculture and communications in their upper division course work.

Because of this variability in programs, agricultural communications faculty may be facing some of the same academic issues shared by colleagues in other nascent fields, such as women’s studies, popular culture, film studies or, closer to home, natural resources conservation management. What is the current status of this emerging field, especially since it is almost exclusively housed in long-established colleges of agriculture? How is it faring in terms of support (funding, space, personnel)? Finally, what directions are these programs taking?

The purposes of this study were to examine current undergraduate agricultural communications programs in the southern United States and to identify their baseline characteristics. Specific objectives were:

1. to compile a list of colleges/universities with agricultural communications programs,
2. to identify their current major programmatic areas as perceived by agricultural communications faculty, and
3. to identify future trends for agricultural communications undergraduate programs as perceived by agricultural communications faculty.

Methods

This research surveyed all undergraduate agricultural communications programs in the 13-state southern region, which included Alabama, Arkansas, Florida, Georgia, Kentucky, North Carolina, Louisiana, Mississippi, Oklahoma, South Carolina, Tennessee, Texas and Virginia. A 43-question survey was sent via electronic mail to the primary advisers for chapters of Agricultural Communicators of Tomorrow (ACT) as well as to land-grant agricultural communications professionals who teach agricultural communications courses or had expressed interest to the National ACT faculty adviser in starting an agricultural communications program at their universities. A total of 14 surveys (Texas had two programs) was distributed. Nine programs provided information about
The first agricultural communications programs were developed primarily to help disseminate information discovered and created at the experiment stations of land-grant universities (Duley, Jensen & O’Brien, 1984). Iowa State College was the first to offer a Bachelor of Science degree in Agricultural Journalism in 1920. By 1928, there was a total of seven colleges offering courses in agricultural journalism. During the 1960s, agricultural journalism programs had another era of significant growth (Duley et al., 1984). By 1975, most programs defined themselves as "agricultural communications" rather than "agricultural journalism" (Evans, 1975). As of 1991, there were more than 30 agricultural communications programs at colleges and universities across the United States (Doerfert & Cepica, 1991).

Several studies have been conducted within the past decade pertaining to undergraduate agricultural communications programs at U.S. universities. Reisner (1990) found that 26 institutions nationwide taught agricultural communications classes and that the curriculum at these institutions varied widely. Sprecker and Rudd (1998) found that practitioners emphasized a need for students to build firm communication skills in an array of areas, particularly the ability to write. Bailey-Evans (1994) suggested a model curriculum be developed that new or developing agricultural communications programs could use as a guide to meet the needs of the industry and future professionals. She recommended that this model be based on disciplines and competencies identified in her research, which surveyed leaders in agricultural communications (Bailey-Evans, 1994). Terry, Vaughn, Vernon, Lockaby, Bailey-Evans, and Rehrman (1994) recommended that future research identify a core curriculum as the basis of agricultural communications degree programs.

Reisner’s (1990) study examined undergraduate program structure and curricular requirements in agricultural communications programs and found that the programs’ most predominant characteristic was variety. Specifically, Reisner (1990) stated that agricultural communications curricula were lacking because “agricultural communication students are not required to take courses specifically designed to teach cross-cultural global perspectives, agricultural systems analysis, values and ethics in agriculture, public policy, or leadership” (p. 15). Terry et al. (1994) noted that it would be impossible to complete each instructional objective contained in the research in a students’ awareness of the importance of asking questions and engaging the lecturer in meaningful dialogue; however, the students reported that they remained consistent with previously established behaviors during this course.

The four CA students who participated in the training session and interviews at both CU and the remote site reported that they did benefit from the training session in the same way that non-CA students did. They enjoyed learning about the technological aspects of the classroom and reported that knowledge of the capabilities and limitations of the technology eased their anxieties surrounding participation in the course. However, participating in the training session did not change their desire to interact with others.

The training session provided to the CU students and one remote site at the beginning of the semester was valuable in terms of increasing student satisfaction with the course, although it did not change their perceptions regarding the amount of interactions that they engaged in over the semester. Initially, student perceptions of anticipated interactions as a result of the training sessions were high at both CU and the remote site. As the semester progressed, the students who participated in the skills training session settled into a routine and their reported actual interaction was not affected by the training session, especially among the four CA students. The following quotes serve to illustrate this point:

Interviewer: Did material covered in the workshop increase your desire to interact with the instructors or other students?

Student 38: No, I don’t think anything could increase my desire to interact (CA).

Student 27: No, only because I don’t like asking questions (CA).

Student 81: I don’t think it really made that much of a difference one way or the other.

Student 9: I remember thinking that because of the workshop, I was going to interact more in the class; but I never actually did. I did remember thinking that after hearing all that, I should interact more and communicate more in the class, but I haven’t.
Implications

While this study did advance skills training literature by demonstrating the impact of a skills training session, there is substantial work to be done in terms of understanding what specific factors are most effective in increasing interaction in a distance education classroom. The skills training sessions delivered to students at CU and the remote site were found to be effective in increasing overall student satisfaction with the course (Kelsey, 2000), but not the level of interaction between students and instructors. Further research should focus on skills training attributes to determine the relationship between the level and quality of interaction in a distance education course.

Key constructs that surfaced in this study for explaining the relationship between interaction and CA students were vicarious interaction (Fulford & Zhang, 1993; Zhang & Fulford, 1994) and anticipated interaction (Yarkin-Lenin, 1983). For both CA and non-CA students, direct participation in the question and answer session and the discussion board was not necessary for learning, nor was it as satisfying as watching and listening to others participate.

When students report that learning vicariously and through anticipated interactions satisfied them, then educators must ponder who will ask questions during the question and answer session as well as post questions on the discussion board. This study has demonstrated that CA students will not participate orally in the learning environment regardless of interventions. Future research on interaction and skills training should focus on the factors that motivate and stimulate non-CA students (85% of the population) to openly participate in the learning environment.

Discussion and Recommendations

The purpose of this study was twofold: first, to determine the impact of communication apprehension on students who participate in distance education courses and, second, to determine the impact of a skills training session on interaction within a distance education course. The results of this study confirmed that CA is a trait-based personality characteristic that inhibits individuals from speaking to others in a variety of contexts (Allen & Bourhis, 1996; Bourhis & Allen, 1992). CA

Abstract

Student enrollment in agricultural communications undergraduate programs continues to increase throughout the southern region. This research reports on a survey of the nine agricultural communications programs in the 13-state southern region. The survey reviewed programmatic areas being taught, the number of students enrolled at each of the institutions, the faculty allocated to the effort, and faculty opinions about the future directions of their programs, especially in terms of enrollment and support for the program. Findings include that all programs depend on a small number of faculty to teach courses; and many of those faculty seem frustrated with a low level of support, recognition and respect. Two-thirds of respondents believed that a national accreditation program would be beneficial to their programs.
students preferred to participate vicariously and often became invisible to their classmates and site facilitators by adopting a voyeuristic posture in the course. CA students at all sites reported that no amount of skills training would increase their level of oral interaction. The CA trait was more effective in suppressing oral communication than the skills training was in encouraging it. Even when CA students reported knowing that they should participate more in class and that they knew how to communicate through the ICV system, they failed to do so.

In short, the concepts of CA and oral interaction are oxymoronic. Communication apprehensive students preferred not to interact verbally with their public and populated learning environments. Interactions must occur among the communication apprehensive but not in ways that educators typically define or measure them. CA students expressed no desire for change in themselves or the learning environment, having adopted coping mechanisms for succeeding as learners. CA students interviewed for this study were academically successful, having obtained upper-class status at prestigious universities in the Northeast. Learning occurs for CA students in the hidden recesses of an internal dialogue, in the quiet and private spaces of their world, in textbooks and libraries, over E-mail and by reading discussion boards. It is the output of the spoken word that brings all CA students to a halt, not the input. Given these findings, should instructors change their attitude or behavior toward CA students? Research on vicarious interaction says no by reminding educators to engage students in meaningful dialogue; however, not each and every student necessarily needs to be engaged as psychological interactivity is predominantly vicarious in nature (Zhang & Fulford, 1994).

Providing skills training to all students involved in a distance-learning course at both the local and remote sites at the beginning of the semester is strongly advised. The overall impact of the skills training session reported in this study served to demystify the classroom at CU and the remote site by educating participants on technological features of the ICV system, thus moving students toward a state of readiness for learning course content. Anxiety was reduced when students knew what to expect from the technology in terms of its capabilities and limitations. Knowledge of the inner workings of the ICV classroom gave students confidence in operating
necessary controls for communication and served to increase student satisfaction with the course. The results from this study suggest that the impact of the training session for increasing interaction may have been obscured by participants’ unwillingness to communicate. In fact, the intrinsic value of the skills training session was reportedly high for students even though it failed to motivate them to interact overtly.

The training session could be offered during the first 30 minutes of the first class session from the local site using ICV technology as the mode of delivery. The training would allow students at all sites to practice using the technology in a realistic setting before the delivery of content. There was little need for the researcher to travel to the remote site to deliver the skills training face-to-face. For participants, the most memorable components of the training session were practicing using the ICV technology and seeing themselves on TV. A revised outline for the skills training session based on findings from the present study is included in the Appendix.

Key Words
Communication apprehension, interaction, communication skills training

References

Buck and Paulson (1995), who studied members of six national agricultural communications organizations, reported that "the average agricultural communicator is most likely to belong to Agricultural Communicators in Education with the membership dues paid by his or her employer." What is not clear, however, is whether ACE members had their dues paid by their employers or whether the other agricultural communicators in the study had their dues paid by their employers.

Fifty-two percent of the respondents indicated they wanted ACE to promote the disciplines of communications and technology to their administrators. ACE may want to consider whether to work with employers and encourage them to purchase "organizational memberships," similar to the way universities buy group memberships to CASE, thus supporting professional growth and ACE at the same time.

About two-thirds of the respondents felt that the name "Agricultural Communicators in Education" accurately described the organization’s purpose. However, a third felt the name needed to be changed to better reflect its membership and the fact that many members did not work for "agriculture" in the strictest sense. ACE members will need to decide whether to change the organization’s name or to find a home within an organization identified with "agriculture," "communicators," and "education."

ACE’s mission statement identifies professional-skill development as ACE’s major function:

- ACE develops professional skills of education, government, and research communicators and information technologists to extend knowledge about agriculture, natural resources, and human sciences to people worldwide.

The survey shows that ACE must improve in this area if it is to meet member expectations and stay relevant as the premier professional organization for communicators and information technologists at land-grant universities and associated businesses and agencies. However, as with any volunteer organization, ACE will change only if the membership puts forth the energy to make it happen.

The ACE board should periodically survey the membership

Appendix

Outline of Recommended Skills Training Session: Revised

Use the first class meeting to conduct a 30-minute climate-setting session with all students present and connected through the ICV system.

Welcome and Introductions –

Introduce local and remote site facilitators to the group.

Have each site facilitator introduce his/her cohort to the group.

Ask students to conceptualize the course as an inter-connected learning community that welcomes interaction among and between sites.

Student Expectations –

Discuss content and interaction expectations with students.

One suggestion was to offer skill-building workshops, either at the national level or at regional sites, for ACE members alone or for other participants as well. Another suggestion was for ACE to partner with other groups, such as NETC, CASE, EVP, NAMA (National Agricultural Marketing Association), or ARC (Agricultural Relations Council) to offer joint meetings or workshops to meet member needs.

The changing culture within communications units is having a major impact on the membership of and expectations for ACE. Fewer active members have academic appointments than in the past (Thomas, 1996; Donnellan, unpublished). Active ACE members use new technologies in their jobs (e.g., E-mail, the Web) and may even consider themselves to be information technologists rather than communicators. Demands for production and marketing have increased (Thomas, 1996), along with demands for greater accountability (Richardson, 1999). And members are being recruited from more than just traditional land-grant universities.

Another challenge facing ACE is the increasing demands on members’ time, both from work and family. ACE needs to find a way to serve its members without demanding too much of their time. That, however, may be difficult for a volunteer organization that survives because of the efforts of its members.

Some respondents were concerned that ACE might possibly raise its dues, although only 13 percent indicated that dues would “absolutely” or “nearly always” constrain them from participating in ACE.

In some professions, paying dues to belong to professional organizations is an expected part of the price of being a professional. As part of the faculty culture, faculty members join professional organizations to share scholarship and network with peers. In recent years the number of faculty positions within agricultural communications offices has dropped, being replaced by positions with such titles as academic-professional or specialist (Thomas, 1996; Donnellan, unpublished). Academic-professional positions in general do not carry the same expectations for scholarship and professional involvement that faculty positions do. What impact that may have on membership and involvement in ACE is worth further study.
With the increase in the number of technologists within the organization, and the addition of more people with responsibilities outside traditional agriculture, the ACE board wanted to know how members felt about another possible name change.

About two-thirds of the respondents felt that the name "Agricultural Communicators in Education" accurately described the organization's purpose. Respondents who thought "ACE" accurately describes the membership and purpose were not significantly different from those who wanted a name change. When asked for possible suggestions for a name change, respondents said:

- Keep "communication" in the name.
- Remove "agriculture" from the name.
- Add "technology" to the name.

One possible name offered by a few respondents was "National Association of Land-Grant Communicators." The one person who added a written comment about the name said:

I am not unhappy with ACE’s name. I just don’t think it fits us well. At my institution, administration is taking the lead role away from agriculture. In fact, the name "Extension" is to be used less. What are we: Outreach Communicators?????? Things are changing across the nation. We may need to let things settle before we mess with our name again.

Conclusions and Implications

Respondents gave a variety of reasons for joining ACE and in general expressed support for the organization and its leadership. Opportunities to network with peers, learn of job opportunities, share scholarship with others, develop leadership skills, and receive feedback on professional efforts through the Critique and Awards program were areas where ACE provided valuable member services.

However, ACE should consider focusing special attention on professional development, since ACE members clearly look to ACE to have their professional development needs met. Those needs include technical and creative skill-building as well as integrative, evaluative, and marketing skills.

Explain how final grades will be determined.
Students must be asked and expected to participate during class discussion.
Students are expected to access asynchronous learning resources independently (Web site, readings, discussion board, and E-mail).

Speaking Protocol –

- Explain the speaking protocol to students (10-minute question and answer session at the end of the lecture).
- The student must get the attention of the moderator and let him/her know that there is a question or comment so s/he will turn off the mute button.
- The student must speak clearly, project his/her voice and be visible to the camera while asking questions.

Practice with the Interactive Compressed Video (ICV) Technology –

- Invite experts from the Office of Distance Learning to deliver this portion of the skills training session.
- Explain and demonstrate ICV operations to students.
- Practice interacting with other sites via ICV and seeing self on TV.
- Practice using the camera and pressing the microphone button.
- Explain time delays and that voices may be choppy and delayed; however, it is important to keep speaking in a clear, steady stream. Pausing amplifies the problem.
- The mute button should be “on” when no one from the site is speaking and should be “off” when students want to speak to the group.

Wrap-up and Discussion –

- Address remaining questions and concerns of students and site facilitators.
- Paper and pencil evaluation of session for improvement.