Nutritional effects of beef connective tissue characteristics and eating qualities

J.J. Wu
Melvin C. Hunt
Donald H. Kropf
Dell M. Allen

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr
Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1981 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Nutritional effects of beef connective tissue characteristics and eating qualities

Abstract
We compared taste panel and connective tissue characteristics of beef fed a high energy diet with beef fed grass. The high energy diet produced higher USDA quality and yield grades, more rapid weight gain, and increased connective tissue collagen synthesis and breakdown. But, it did not consistently improve taste panel and shear characteristics over grass-feeding.

Keywords
Cattlemen's Day, 1981; Report of progress (Kansas State University. Agricultural Experiment Station); 394; Beef; Quality grade; Yield grade; Gain

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
J.J. Wu, Melvin C. Hunt, Donald H. Kropf, Dell M. Allen, and Curtis L. Kastner
Nutritional Effects of Beef Connective Tissue
Characteristics and Eating Qualities

J. J. Wu, C. L. Kastner, M. C. Hunt,
D. H. Kropf, and D. M. Allen

Summary

We compared taste panel and connective tissue characteristics of
beef fed a high energy diet with beef fed grass. The high energy diet
produced higher USDA quality and yield grades, more rapid weight gain,
and increased connective tissue collagen synthesis and breakdown. But,
it did not consistently improve taste panel and shear characteristics
over grass-feeding.

Introduction

Muscles and muscle cells are surrounded by layers of connective
tissue, which are comprised mainly of the protein collagen. The
connective tissue network shrinks when meat is cooked, and the shrinkage
either toughens or tenderizes the cooked meat, depending on the strength
of collagen fibers. In tender muscle from young animals, collagen fibers
contain very few heat-stable bonds, so they fall apart and gel upon cooking.
As animals age, collagen fibers are held together more strongly by heat-
stable bonds, then they remain as "chewy", tough fibers rather than falling
apart on cooking. Hydroxyproline, a specific amino acid, occurs only in
collagen, so measures of hydroxyproline also are measures of collagen.
As the connective tissue collagen matures, it becomes more difficult to
solubilize. Salt-soluble collagen represents young, newly synthesized
collagen, while acid-soluble collagen is more mature. Additionally, the
amount of hydroxyproline in the blood indicates how fast collagen is
broken down and replaced. We studied the effects of high energy and grass
diets on beef eating quality, collagen chemical characteristics, and blood
hydroxyproline levels.

Experimental Procedure

We assigned 18 Hereford steers of similar age and nutritional background
to three treatment groups: group I was slaughtered in October directly off
bluestem pasture at 19 to 20 months of age; group II was slaughtered at
the same age, but after 120 days on a 90% concentrate diet; and group III
was pastured until October, then fed 90% concentrate for 126 days and slaughtered
at 23 to 24 months of age. The Longissimus (loin eye) and Biceps femoris
(outside round) muscles were removed 24 hr postmortem, vacuum packaged, and
stored for 5 days before being cut into steaks.

Blood hydroxyproline was measured during the feeding period and total
salt-and acid-soluble collagen was measured on Longissimus and Biceps femoris
muscles.
Cooked loin eye and outside round steaks were evaluated by a trained taste panel and Warner-Bratzler shear.

Results

Cattle on high energy diets had higher quality and yield grades and weighed more than cattle fed grass only (Table 7.1).

Figure 7.1 shows changes in free (non-protein) hydroxyproline in the blood of steers with increasing time on a high energy diet. The first six weeks, muscle growth was rapid and collagen turnover rapid. Later, fat deposition predominated and collagen replacement slowed, as indicated by declining hydroxyproline.

As shown in Table 7.2, collagen in loin eye steaks from cattle fed the high energy diets was more readily soluble than collagen from grass-fed cattle (group I). Collagen synthesis was accelerated by a high energy diet. Loin eye steaks from the three groups did not differ in total collagen, Warner-Bratzler shear force (Table 7.3), or taste panel ratings for shear tenderness, juiciness, and flavor intensity. Outside round steaks from grass-fed steers were juicier than those from steers fed a high energy diet (groups II and III). As we expected, collagen was much higher in outside round muscles than in loin eye. High-energy feeding did not consistently improve taste panel tenderness, shear force, or collagen solubility of outside round steaks.

In this study grass finished cattle yielded acceptable taste panel scores. Feeding did not consistently improve taste or shear tenderness.

<table>
<thead>
<tr>
<th>Carcass traits</th>
<th>Nutritional regimens</th>
<th>Group I Grass</th>
<th>Group II Fed</th>
<th>Group III Grass and Fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality grade<sup>a</sup></td>
<td>Standard<sup>17</sup><sup>b</sup></td>
<td>Good<sup>60</sup><sup>c</sup></td>
<td>Choice<sup>07</sup><sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Hot carcass wt., lb</td>
<td>377.3<sup>b</sup></td>
<td>598.2<sup>c</sup></td>
<td>591.2<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Yield grade<sup>a</sup></td>
<td>1.60<sup>b</sup></td>
<td>2.85<sup>c</sup></td>
<td>2.91<sup>c</sup></td>
<td></td>
</tr>
</tbody>
</table>

^aBased on descriptions included in USDA (1975) beef grading standards.

^{b,c,d}Means for the same trait bearing a common superscript letter do not differ (P>.05).
Table 7.2. Means for collagen characteristics of longissimus (loin eye) and biceps femoris (outside round) muscles from cattle fed three nutritional regimens.

<table>
<thead>
<tr>
<th>Intramuscular collagen</th>
<th>Nutritional regimens</th>
<th>Group I Grass</th>
<th>Group II Fed</th>
<th>Group III Grass and fed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longissimus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen content (mg/g)</td>
<td>Fresh tissue</td>
<td>3.88<sup>a</sup></td>
<td>4.26<sup>a</sup></td>
<td>4.28<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Moisture and fat free</td>
<td>17.62<sup>a</sup></td>
<td>18.22<sup>a</sup></td>
<td>18.41<sup>a</sup></td>
</tr>
<tr>
<td>Percent solubility<sup>c</sup></td>
<td>Salt soluble</td>
<td>1.99<sup>a</sup></td>
<td>2.48<sup>b</sup></td>
<td>2.22<sup>a,b</sup></td>
</tr>
<tr>
<td></td>
<td>Acid soluble</td>
<td>3.00<sup>a</sup></td>
<td>2.80<sup>a</sup></td>
<td>3.86<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Salt + Acid soluble</td>
<td>4.99<sup>a</sup></td>
<td>5.28<sup>a</sup></td>
<td>6.08<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Biceps femoris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen content (mg/g)</td>
<td>Fresh tissue</td>
<td>8.53<sup>a,b</sup></td>
<td>9.12<sup>a</sup></td>
<td>7.74<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Moisture and fat free</td>
<td>45.70<sup>a</sup></td>
<td>44.71<sup>a</sup></td>
<td>36.46<sup>b</sup></td>
</tr>
<tr>
<td>Percent solubility<sup>c</sup></td>
<td>Salt soluble</td>
<td>1.20<sup>a,b</sup></td>
<td>1.29<sup>a</sup></td>
<td>1.05<sup>b</sup></td>
</tr>
<tr>
<td></td>
<td>Acid soluble</td>
<td>2.30<sup>a</sup></td>
<td>2.42<sup>a</sup></td>
<td>2.98<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Salt + Acid soluble</td>
<td>3.50<sup>a</sup></td>
<td>3.71<sup>a</sup></td>
<td>4.03<sup>a</sup></td>
</tr>
</tbody>
</table>

^{a,b}Means in the same row bearing a common superscript letter do not differ (P>.05).

^cAmount of salt-soluble collagen and acid-soluble collagen in meat samples are used as an indication of collagen maturity; salt-soluble collagen contains newly synthesized collagen, while acid-soluble collagen is slightly older than salt-soluble collagen.

Table 7.3. Means for taste panel ratings and Warner-Bratzler shear force values of longissimus (loin eye) and biceps femoris (outside round) steaks from cattle fed three nutritional regimens.

<table>
<thead>
<tr>
<th>Nutritional regimens</th>
<th>Group I Grass</th>
<th>Group II Fed</th>
<th>Group III Grass and fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trait</td>
<td>Longissimus</td>
<td>Biceps femoris</td>
<td></td>
</tr>
<tr>
<td>Overall tenderness</td>
<td>5.9<sup>b</sup></td>
<td>6.1<sup>b</sup></td>
<td>6.6<sup>b</sup></td>
</tr>
<tr>
<td>Connective tissue amount</td>
<td>6.3<sup>b</sup></td>
<td>6.0<sup>b</sup></td>
<td>7.4<sup>c</sup></td>
</tr>
<tr>
<td>Flavor intensity</td>
<td>6.1<sup>b</sup></td>
<td>6.3<sup>b</sup></td>
<td>6.4<sup>b</sup></td>
</tr>
<tr>
<td>Juiciness</td>
<td>6.5<sup>b</sup></td>
<td>6.0<sup>b</sup></td>
<td>6.3<sup>b</sup></td>
</tr>
<tr>
<td>Shear force, lb</td>
<td>7.0<sup>b</sup></td>
<td>7.0<sup>b</sup></td>
<td>5.9<sup>b</sup></td>
</tr>
</tbody>
</table>

^{a,b}Means based on 8-point rating scale 8 = extremely tender, intense flavor, juicy or no connective tissue; 1 = extremely tough, bland flavor, dry or abundant connective tissue.

^{b,c}Means in the same row bearing a common superscript letter do not differ (P>.05).
Figure 7.1. Effect of high energy diet on the blood plasma non-protein hydroxyproline and live animal weight of group III cattle.

Beef Tenderness and Collagen

Muscles and muscle cells are surrounded by layers of connective tissue, comprised mainly of the protein, collagen. When meat is cooked, this connective tissue network shrinks. This shrinkage has either a toughening or tenderizing effect on the cooked meat. In tender muscle from young animals, collagen fibers contain very few heat stable bonds, so fibers fall apart and gel upon cooking. In older animals, the collagen fibers are held together by heat stable bonds. The cooked collagen fibers remain intact as "chewy", tough fibers.