1983

Effect of fluctuating hot temperatures on performance and immunity in finishing pigs.

M A. Jensen
Frank Blecha
Robert H. Hines

Follow this and additional works at: https://newprairiepress.org/kaesrr
Part of the Other Animal Sciences Commons

Recommended Citation
Jensen, M A.; Blecha, Frank; and Hines, Robert H. (1983) "Effect of fluctuating hot temperatures on performance and immunity in finishing pigs.," Kansas Agricultural Experiment Station Research Reports: Vol. 0: Iss. 10. https://doi.org/10.4148/2378-5977.6095

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1983 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Effect of fluctuating hot temperatures on performance and immunity in finishing pigs.

Abstract
Housing pigs in a thermal stress environment reduced gain, intake and feed efficiency. Cell mediated immunity responses were lower under the constant heat stress as well as when the temperature was lowered to a thermal neutral temperature for only 4 hours daily. Daily cooling to thermal neutral for 4, 8, or 16 hours improved growth performance. Antibody responses were not altered by temperature fluctuations.; Swine Day, Manhattan, KS, November 10, 1983

Keywords
Swine day, 1983; Kansas Agricultural Experiment Station contribution; no. 84-174-S; Report of progress (Kansas State University. Agricultural Experiment Station and Cooperative Extension Service); 442; Swine; Fluctuating hot temperatures; Performance; Immunity

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.
EFFECT OF FLUCTUATING HOT TEMPERATURES ON
PERFORMANCE AND IMMUNITY IN FINISHING PIGS.

Michael A. Jensen, Frank Blecha* and Robert H. Hines

Summary

Housing pigs in a thermal stress environment reduced gain, intake and feed efficiency. Cell mediated immunity responses were lower under the constant heat stress as well as when the temperature was lowered to a thermal neutral temperature for only 4 hours daily. Daily cooling to thermal neutral for 4, 8, or 16 hours improved growth performance. Antibody responses were not altered by temperature fluctuations.

Introduction

Thermal heat stress and its effect on performance and immune response can be a serious summertime problem. However, heat stress conditions are rarely encountered 24 hours a day. A cooler period daily may allow the animal to compensate for the effects of the heat stress period.

Procedure

Eighty crossbred barrows were used to assess the influence of diurnal changes in hot temperatures on growth performance, phytohemagglutinin (PHA) skin-test reactions, antibody responses to sheep erythrocytes (SRBC) and total and differential leukocyte numbers. After a 3-day adjustment period, 160 pound barrows were started on 28-day trials at 5 different thermal treatments. These included 2 constant dry bulb temperatures of 20 C and 35 C and three daily fluctuating environments of 16 h at 20 C and 8 h at 35 C; 8 h at 20 C and 16 h at 35 C; 4 h at 20 C and 20 h at 35 C. A 16% sorghum-soybean diet and water were supplied ad libitum. Feed intake and growth performance were measured weekly. In vivo cellular immunity was evaluated weekly by measuring the PHA-induced increase in flank skin thickness. All pigs were injected intraperitoneally with 5 ml of a 40% SRBC suspension at the start and on day 14 of each trial. Heparinized blood samples (5 ml) were obtained weekly for determination of SRBC antibody titers and total and differential leukocyte numbers.

Results and Discussion

Average daily intake, gain and efficiency were poorer (P<.04) in pigs exposed to constant 35 C than in those exposed to the constant 20 C treatment (Fig. 1). However, daily cooling to 20 C for 4, 8 or 16 h also resulted in better (P<.04) growth performance and feed efficiency those pigs housed in the constant

*Department of Anatomy and Physiology
hot temperature. PHA skin-test reactions were decreased (P<.02) and lymphopenia tended (P<.10) to occur in pigs exposed to the two hottest environments (Figs. 2, 3 & 4). Antibody titers to SRBC were not altered by thermal treatments (Fig. 5). These data suggest that 4, 8 or 16 h of daily cooling offsets heat-induced decreases in growth performance and feed efficiency and that very hot environments suppress in vivo cellular immunity in finishing pigs.

Figure 1

EFFECT OF FLUCTUATING HEAT STRESS ON INTAKE, GAIN AND EFFICIENCY

<table>
<thead>
<tr>
<th>Daily Hours at 35 C</th>
<th>Daily Intake (lbs)</th>
<th>Daily Gain (lbs)</th>
<th>F/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.80</td>
<td>1.89</td>
<td>3.59</td>
</tr>
<tr>
<td>8</td>
<td>6.01</td>
<td>1.89</td>
<td>3.17</td>
</tr>
<tr>
<td>16</td>
<td>5.90</td>
<td>1.50</td>
<td>3.94</td>
</tr>
<tr>
<td>20</td>
<td>5.39</td>
<td>1.61</td>
<td>3.36</td>
</tr>
<tr>
<td>24</td>
<td>4.29</td>
<td>0.73</td>
<td>5.91</td>
</tr>
</tbody>
</table>

Fig. 2

Phytohemagglutinin Skin-Test Response

[Diagram showing skin-fold changes over time]