New Prairie Press - Conference on Applied Statistics in Agriculture: CO-EFFECT ANALYSIS OF VARIANCE: A NEW METHOD FOR UNBALANCED DATA
 

Author Information

Andre Plante

Abstract

For fixed-effect models one can always, according to the Gauss-Markov Theorem, uniquely determine independent variables called source identifiers, each corresponding to a source of variation. When linearly combined, source identifiers can generate all possible expected values for the response variable. The co-effect method uses regression of the response variable on source identifiers. Corresponding regression coefficients are, by definition, unbiased estimates of co-effects, and satisfy the same restrictions as those imposed on main effects and interaction effects in standard analysis of variance. with balanced data, co-effect analysis gives results identical to those of the standard method; with unbalanced data, however, results can be significantly different

.

An example is given where predicted genetic interaction can be easily observed using the co-effect method (Р≈10-14) while Yates' weighted-squares-of-means method does not detect any interaction effects (P>O.l)

.

Keywords

Unbalanced data, analysis of variance, interaction, co-effects, genetic experiment

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Plum Print visual indicator of research metrics
PlumX Metrics
  • Usage
    • Downloads: 193
    • Abstract Views: 21
  • Captures
    • Readers: 2
see details

Share

COinS
 
Apr 26th, 8:30 AM

CO-EFFECT ANALYSIS OF VARIANCE: A NEW METHOD FOR UNBALANCED DATA

For fixed-effect models one can always, according to the Gauss-Markov Theorem, uniquely determine independent variables called source identifiers, each corresponding to a source of variation. When linearly combined, source identifiers can generate all possible expected values for the response variable. The co-effect method uses regression of the response variable on source identifiers. Corresponding regression coefficients are, by definition, unbiased estimates of co-effects, and satisfy the same restrictions as those imposed on main effects and interaction effects in standard analysis of variance. with balanced data, co-effect analysis gives results identical to those of the standard method; with unbalanced data, however, results can be significantly different

.

An example is given where predicted genetic interaction can be easily observed using the co-effect method (Р≈10-14) while Yates' weighted-squares-of-means method does not detect any interaction effects (P>O.l)

.