Abstract

Quantitative genetics is one of the most important components to provide valuable genetic information for improving production and quality of plants and animals. The research history of quantitative genetics study could be traced back more than one hundred years. Since the Analysis of Variance (ANOVA) methods were proposed by Fisher in 1925, several useful genetic models have been proposed and have been widely applied in both plant and animal quantitative genetics studies. Useful examples included various North Carolina (NC) and diallel cross mating designs. However, many genetic models derived from these mating designs are ANOVA method based, so there are several major limitations. For example, ANOVA based methods are constricted to simple genetic models and specific mating designs and require balanced data structures. Though mixed linear model approaches were proposed in the 1960s, their applications in quantitative genetics study were limited until the early 1990s. The advantages of the mixed linear model approaches include the flexibility for unbalanced genetic data structures and complex genetic model systems. In the past years the mixed linear models have been applied to analyze various useful genetic models and a number of computer programs have been developed. In addition, researchers are not only interested in finding appropriate data structures needed for specific genetic models but also want to identify appropriate genetic models suitable for a specific data structure. Therefore, a generalized computer tool has been developed for both model evaluations and actual data analyses. In this paper, various genetic models will be detailed and generalized by mixed linear model approaches and the features of the new computer tool GenMod will be described.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
Apr 25th, 10:30 AM

A GENERALIZED APPROACH AND COMPUTER TOOL FOR QUANTITATIVE GENETICS STUDY

Quantitative genetics is one of the most important components to provide valuable genetic information for improving production and quality of plants and animals. The research history of quantitative genetics study could be traced back more than one hundred years. Since the Analysis of Variance (ANOVA) methods were proposed by Fisher in 1925, several useful genetic models have been proposed and have been widely applied in both plant and animal quantitative genetics studies. Useful examples included various North Carolina (NC) and diallel cross mating designs. However, many genetic models derived from these mating designs are ANOVA method based, so there are several major limitations. For example, ANOVA based methods are constricted to simple genetic models and specific mating designs and require balanced data structures. Though mixed linear model approaches were proposed in the 1960s, their applications in quantitative genetics study were limited until the early 1990s. The advantages of the mixed linear model approaches include the flexibility for unbalanced genetic data structures and complex genetic model systems. In the past years the mixed linear models have been applied to analyze various useful genetic models and a number of computer programs have been developed. In addition, researchers are not only interested in finding appropriate data structures needed for specific genetic models but also want to identify appropriate genetic models suitable for a specific data structure. Therefore, a generalized computer tool has been developed for both model evaluations and actual data analyses. In this paper, various genetic models will be detailed and generalized by mixed linear model approaches and the features of the new computer tool GenMod will be described.