Abstract

The utilization of statistical methods an their applications within the new field of study known as Topological Data Analysis has has tremendous potential for broadening our exploration and understanding of complex, high-dimensional data spaces. This paper provides an introductory overview of the mathematical underpinnings of Topological Data Analysis, the workflow to convert samples of data to topological summary statistics, and some of the statistical methods developed for performing inference on these topological summary statistics. The intention of this non-technical overview is to motivate statisticians who are interested in learning more about the subject.

Keywords

Topological Data Analysis, Persistent Homology, Persistence Diagrams, Barcodes, Persistence Landscapes, Statistics

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
Jan 1st, 1:08 AM

Statistical Methods in Topological Data Analysis for Complex, High-Dimensional Data

The utilization of statistical methods an their applications within the new field of study known as Topological Data Analysis has has tremendous potential for broadening our exploration and understanding of complex, high-dimensional data spaces. This paper provides an introductory overview of the mathematical underpinnings of Topological Data Analysis, the workflow to convert samples of data to topological summary statistics, and some of the statistical methods developed for performing inference on these topological summary statistics. The intention of this non-technical overview is to motivate statisticians who are interested in learning more about the subject.