•  
  •  
 

Keywords

grain sorghum, dryland, nitrogen management, nitrous oxide emissions

Abstract

A study was initiated in 2018 to collect preliminary data to quantify nitrous oxide (N2O) emissions from dryland grain sorghum in western Kansas. Results indicate that the greatest flux of N2O occurred within the first 14 days after fertilization when plant uptake was minimal and soil moisture was elevated. During this time period, the timing and amount of rainfall was critical with respect to N2O flux. Nitrous oxide flux during the fallow phase was negligible. The cumulative emissions factor for fertilizer-derived N2O estimated for Colby (~0.3%) is well below the Intergovernmental Panel on Climate Change (IPCC) default estimate of 1.0%. These preliminary factors are very promising for documenting the sustainability of dryland grain sorghum as biofuel feedstock.

COinS
 

Rights Statement

In Copyright - Educational Use Permitted.
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.